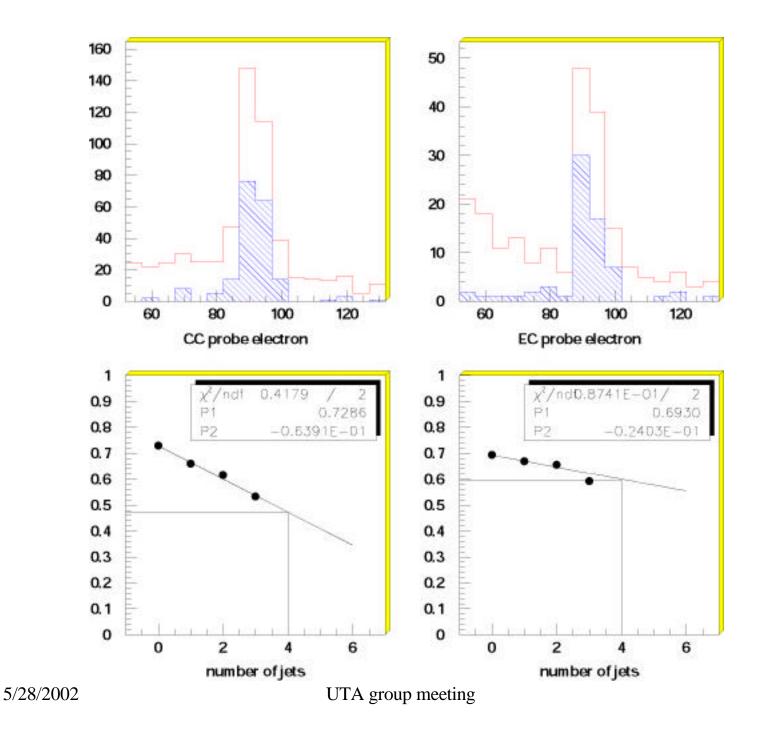
## An update of top to stop analysis



- How to estimate W->e**n** cross section?
- Why the w to encross section I used is so big?
- Next


## w->enu cross section estimate

- Choose an channel related data sample: trigger em1\_eistrkcc\_ms: events of mEt>25, Et>25(CC) Et>20(EC) pass electron quality cut: <a href="https://www.let.org">/www.let.org</a> events of mEt>25, Et>25(CC) Et>20(EC) pass electron quality cut: <a href="https://www.let.org">/www.let.org</a> events of mEt>25, Et>25(CC) Et>20(EC) pass electron quality cut: <a href="https://www.let.org">/www.let.org</a> events: <a href="https://www.let.org">/www.let.org</a> events of mEt>25, Et>25(CC) Et>20(EC) pass electron quality cut: <a href="https://www.let.org">/www.let.org</a> events: <a href="https://www.let.org">//www.let.org</a> events: <a href="https://www.let.org">/www.let.org</a> events: <a href="https://www.let.org">/www.let.org</a> events: <a href="https://www.let.org">//www.let.org</a> events: <a href="https://www.let.org">///www.let.org</a> events: <a href="https://www.let.org">///www.let.org</a> events: <a href="https://www.let.org">////www.let.org</a> events: <a href="https://www.let.org">///www.let.org</a> events: <a href="https://www.let.org"//www.let.org"//www.let.org"///www.let.org</a> events: <a href="https://wwwwwwwwwwwwwwwwwwww
- Choose w->e**n** Monte Carlo sample: apply all the above cuts except electron quality cuts ==># of events N(mc)
- Choose Z->ee data sample (trigger em2\_eis2\_hi): pick first two leading electrons: the tagging electron satisfies quality cuts and Et>20(CC) or Et>15(EC), probe electron satisfies |eta|<1.1 and Et>25

## W->ev cross section estimate

- Choose 4 jets with good quality cuts and Et>25GeV calculate invariance mass of the two electrons before and after apply electron ID cuts to probe electron: L5<1.0; Fiso<0.15 the ratio gives the efficiency of electron quality cut W->em cross section can be derived by N(data)=(luminosity of data)(w->em cross section) (efficiency of electron quality cut)N(mc)/ N(total # of MC sample)
- luminosity of data sample: 94pb^-1, efficiency of electron ID cut ~ 0.55 N(data)=116, N(mc)=989, N(total)=35501, cross section~80pb
- Using branching ratio, we can get cross sections for w->**m**, w->**tn** and **t** hadronically or leptonically decays.
- I use w->em cross section= 96 pb, a CDF results~3.1, 30 times smaller !!!
- Compare data (histogram) and MC sample (point),there are certain excesses, they are background of w to en: QCD, w->tn, Z->ee, top and promotion.

New about Z->tt and Z->nn cross section? Reoptimize my cuts.





| Process                                                                 | $\sigma$ (pb) | $\pm \delta \sigma$ (pb) | MC events generated |
|-------------------------------------------------------------------------|---------------|--------------------------|---------------------|
| $t\bar{t} \rightarrow X$                                                | 5.9           | 1.54                     | 22720               |
| $W \rightarrow e\nu + \ge 2$ jets                                       | 510           | 35                       | 16929               |
| $W \rightarrow \mu \nu + \ge 2$ jets                                    | 510           | -45                      | 16929               |
| $W \rightarrow \tau \nu + \ge 2$ jets, $\tau \rightarrow \ell \nu \nu$  | 168           | 15.5                     | 5955                |
| $W \rightarrow \tau \nu + \ge 1$ jets                                   | 1700          | 190                      | 458102              |
| $W \rightarrow e\nu + \ge 3$ jets                                       | 208           | 45                       | 14840               |
| $W \rightarrow \mu \nu + \ge 3$ jets                                    | 208           | 45                       | 14840               |
| $W \rightarrow \tau \nu + \geq 3$ jets, $\tau \rightarrow \ell \nu \nu$ | 73            | 15.5                     | 10418               |
| $W \rightarrow \tau \nu + \ge 2$ jets, $\tau \rightarrow$ hadrons       | 330           | 28                       | 10854               |
| $W \rightarrow e\nu + \ge 4$ jets                                       | 96            | 28                       | 15727               |
| $W \rightarrow \mu \nu + \ge 4$ jets                                    | 96            | 34                       | 15727               |
| $W \rightarrow \tau \nu + \ge 4$ jets, $\tau \rightarrow \ell \nu \nu$  | 34            | 12.2                     | 5533                |
| $W \rightarrow \tau \nu + \ge 3$ jets, $\tau \rightarrow$ hadrons       | 135           | 27                       | 10793               |
| pair $W \rightarrow \ell \nu, W \rightarrow qq'$                        | 5.54          | 1.66                     | 47410               |
| pair $W \rightarrow \ell \nu, Z \rightarrow X$                          | 0.32          | 0.10                     | 47940               |
| $Z \rightarrow ee + \ge 2$ jets                                         | 22            | 3.5                      | 7737                |
| $Z \rightarrow \mu \mu + \ge 2$ jets                                    | 22            | 3.5                      | 7710                |
| $Z \rightarrow \tau \tau + \ge 2$ jets                                  | 101           | 19                       | 83328               |
| $Z \rightarrow \nu \nu + \ge 2$ jets                                    | 132           | 21                       | 15676               |
| $Z \rightarrow ee + \ge 3$ jets, $Z p_T > 50$                           | 5.6           | 1.8                      | 19435               |
| $Z \rightarrow \mu \mu + \ge 3$ jets                                    | 104           | -36                      | 24285               |
| $Z \rightarrow \tau \tau + \ge 3$ jets, $25 < Z p_T < 50$               | 17.8          | 5.8                      | 11909               |
| $Z \rightarrow \tau \tau + \ge 3$ jets, $50 < Z p_T < 100$              | 5.0           | 1.6                      | 2943                |
| $Z \rightarrow \tau \tau + \geq 3$ jets, $100 < Z p_T < 200$            | 0.58          | 0.19                     | 957                 |
| $Z \rightarrow \tau \tau + \geq 3$ jets, $200 < Z p_T < 400$            | 0.019         | 0.006                    | 911                 |
| $Z \rightarrow \nu \nu + \geq 3$ jets, $25 < Z p_T < 50$                | 107           | 35                       | 39929               |
| $Z \rightarrow \nu \nu + \ge 3$ jets, $50 < Z p_T < 100$                | 30            | 9.8                      | 9958                |
| $Z \to \nu \nu + \ge 3$ jets, $100 < Z p_T < 200$                       | 3.5           | 1.1                      | 994                 |
| $Z \to \nu \nu + \ge 3$ jets, $200 < Z p_T < 400$                       | 0.11          | 0.037                    | 962                 |
| $Z \rightarrow \tau \tau + \ge 4$ jets, $25 < Z p_T < 50$               | 17.8          | 5.8                      | 52711               |
| $Z \rightarrow \tau \tau + \ge 4$ jets, $50 < Z p_T < 100$              | 5.0           | 1.6                      | 15380               |
| $Z \rightarrow \tau \tau + \geq 4$ jets, $100 < Z p_T < 200$            | 0.58          | 0.19                     | 1817                |
| $Z \rightarrow \tau \tau + \ge 4$ jets, $200 < Z p_T < 400$             | 0.019         | 0.006                    | 1167                |
| $Z \rightarrow \nu \nu + \ge 4$ jets, $25 < Z p_T < 50$                 | 107           | 35                       | 1943650             |
| $Z \rightarrow \nu \nu + \geq 4$ jets, $50 < Z p_T < 100$               | 30            | 9.8                      | 449127              |
| $Z \rightarrow \nu \nu + \geq 4$ jets, $100 < Z p_T < 200$              | 3.5           | 1.1                      | 31655               |
| $Z \rightarrow \nu \nu + \geq 4$ jets, $200 < Z p_T < 400$              | 0.11          | 0.038                    | 13116               |

UTA group meeting

creases both the extra interaction correction and the promotion correction contribute a larger fraction of the total

TABLE XX.  $W + \ge n$  jet cross sections. The total uncertainty is broken down into the combined statistical uncertainty (which includes the statistical uncertainty on the number of events and the statistical uncertainty on the efficiency and background calculations), the common systematic uncertainty (4.8% from the input inclusive W cross section), and the systematic uncertainty (which is dominated by jet counting systematics; see Sec. VII B). For this table we list the maximum of the plus and minus systematic.

| п    | Cross Sections Results (pb) |       |      |       | $\sigma_{v}$              |
|------|-----------------------------|-------|------|-------|---------------------------|
| Jets | $BR \cdot \sigma$           | Stat. | Com  | Syst. | $\overline{\sigma_{n-1}}$ |
| >1   | 471.2±57.1                  | 6.3   | 23.1 | 51.8  | $0.189 \pm 0.021$         |
| >2   | $100.9 \pm 19.0$            | 3.2   | 4.9  | 18.1  | $0.214 \pm 0.015$         |
| ≥3   | 18.4±5.3                    | 1.4   | 0.9  | 5.1   | $0.182 \pm 0.020$         |
| >4   | $3.1 \pm 1.4$               | 0.7   | 0.2  | 1.2   | $0.166 \pm 0.042$         |

5/28/2002

ange.

inant

actor

s the

t and