PHYS 1441 – Section 501 Lecture #2

Monday, June 7, 2004 Dr. **Jae**hoon Yu

- Chapter two: Motion in one dimension
 - Velocity (Average and Instantaneous)
 - Acceleration (Average and instantaneous)
 - One dimensional motion at constant acceleration
 - Free Fall
 - Coordinate systems

Remember the quiz this Wednesday!!

Announcements

- Reading assignment #1: Read and follow through all sections in appendix A by Wednesday, June 9
 - A-1 through A-9
- There will be a quiz on this Wednesday, June 9, on these and Chapter 1
- E-mail distribution list: 16 of you have registered
 - Remember 5 (3) extra credit points if done by midnight tonight (Wednesday).
- Homework: You are supposed to download the homework assignment, solve it offline and input the answers back online.
 - 38 registered
 - 25 submitted
 - Must be submitted by 6pm Wednesday to get full, free credit.

Displacement, Velocity and Speed

One dimensional displacement is defined as:

 $\Delta x \equiv x_f - x_i$

Displacement is the difference between initial and final potions of motion and is a vector quantity

Average velocity is defined as:

$$v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

Displacement per unit time in the period throughout the motion Average speed is defined as:

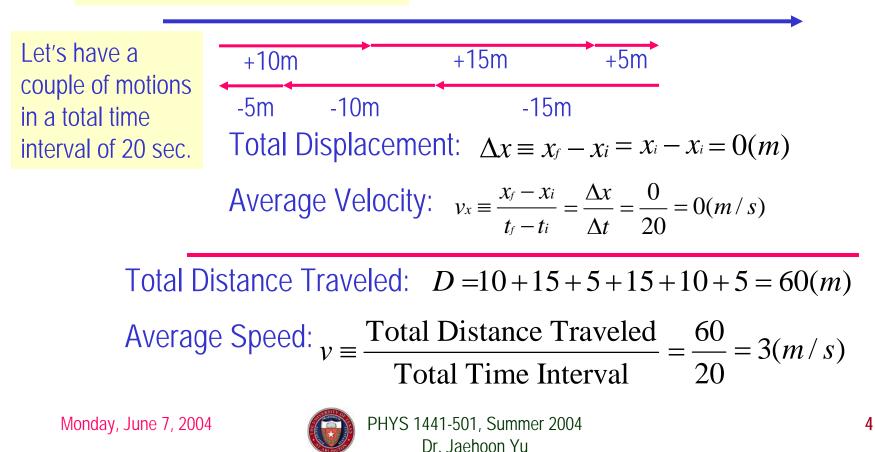
$$v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Interval}}$$

Can someone tell me what the difference between speed and velocity is?

Difference between Speed and Velocity

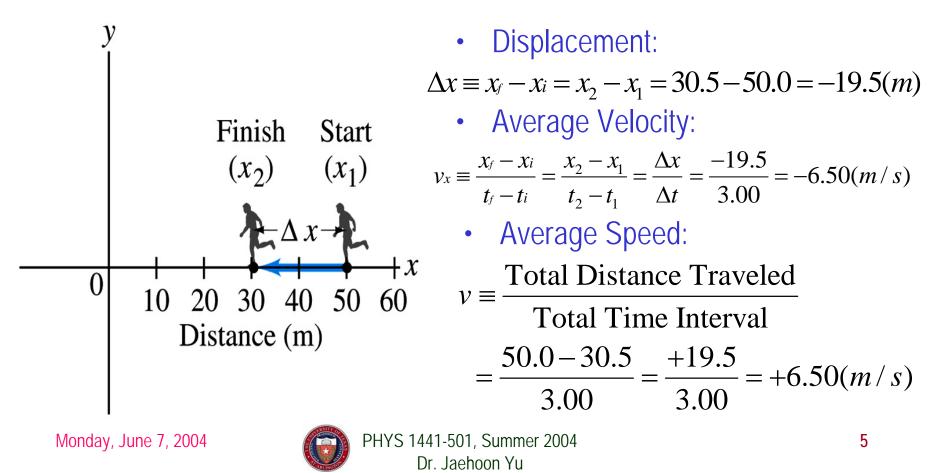
• Let's take a simple one dimensional translation that has many steps:

Let's call this line as X-axis



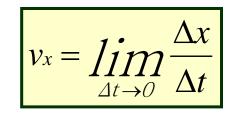
Example 2.1

The position of a runner as a function of time is plotted as moving along the x axis of a coordinate system. During a 3.00-s time interval, the runner's position changes from x_1 =50.0m to x_2 =30.5 m, as shown in the figure. What was the runner's average velocity? What was the average speed?



Instantaneous Velocity and Speed

- Can average quantities tell you the detailed story of the whole motion?
- Instantaneous velocity is defined as:
 - What does this mean?



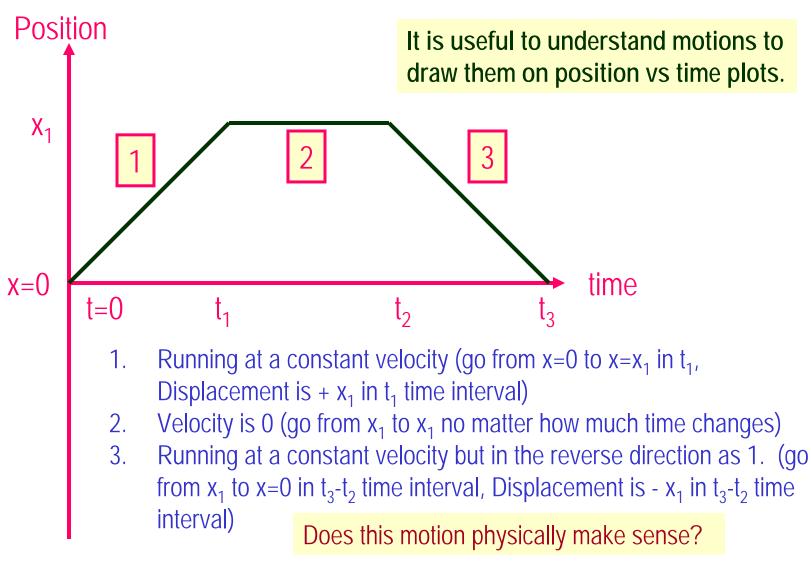
- Displacement in an infinitesimal time interval
- Average velocity over a very short amount of time

•Instantaneous speed is the size (magnitude) of the velocity vector:

$$\left|v_{x}\right| = \left|\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}\right|$$

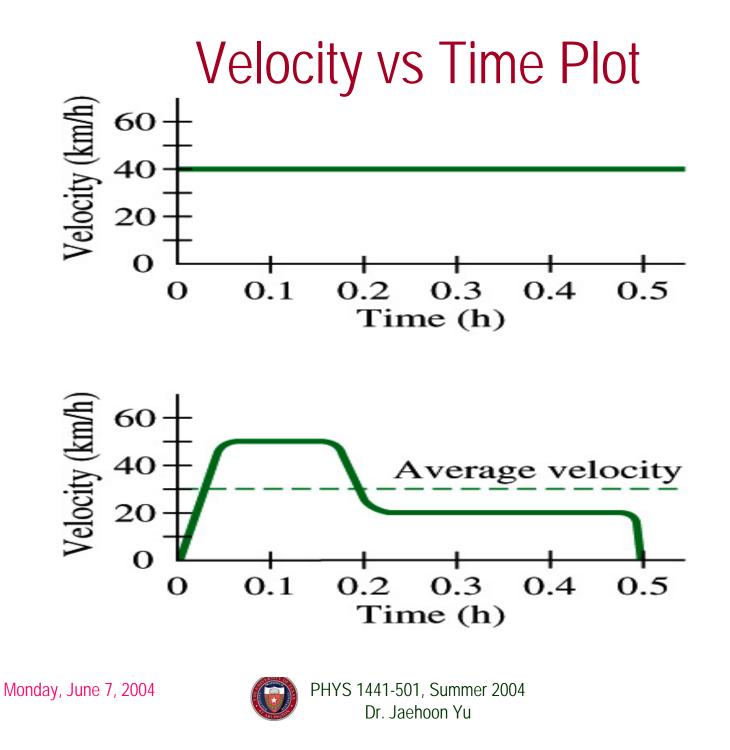
*Magnitude of Vectors are Expressed in absolute values

Position vs Time Plot



Monday, June 7, 2004

PHYS 1441-501, Summer 2004 Dr. Jaehoon Yu



Displacement, Velocity and Speed

Displacement

 $\Delta x \equiv x_f - x_i$

 $t_f - t_i$

Average velocity

Average speed

$$v = \frac{\text{Total Distance Traveled}}{\text{Total Time Spent}}$$

 Δt

Instantaneous velocity

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Instantaneous speed

$$\left|v_{x}\right| = \left|\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}\right|$$

Acceleration

Change of velocity in time (what kind of quantity is this?)

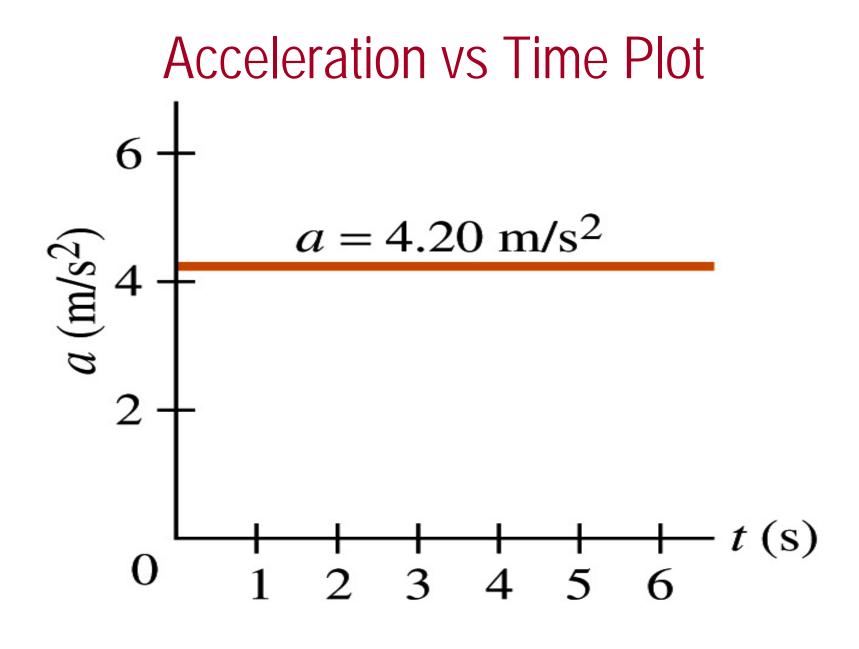
•Average acceleration:

$$a_x \equiv \frac{v_{xf} - v_{xi}}{t_f - t_i} = \frac{\Delta v_x}{\Delta t}$$
 analogs to $v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$

 Instantaneous acceleration: Average acceleration over a very short amount of time.

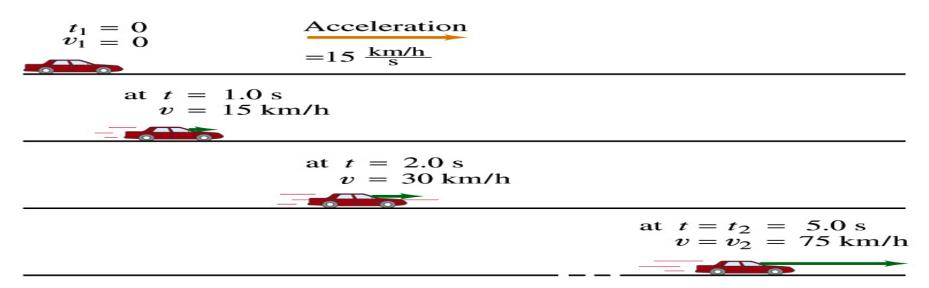
$$a_x \equiv \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t}$$
 analogs to

$$v_x \equiv \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$



Example 2.4

A car accelerates along a straight road from rest to 75km/h in 5.0s.



What is the magnitude of its average acceleration?

$$v_{xi} = 0 \ m/s \qquad -a_x = \frac{v_{xf} - v_{xi}}{t_f - t_i} = \frac{\Delta v_x}{\Delta t} = \frac{21 - 0}{5.0} = \frac{21}{5.0} = 4.2(m/s^2)$$

$$v_{xf} = \frac{75000m}{3600s} = 21 \ m/s \qquad = \frac{4.2 \times (3600)^2}{1000} = 5.4 \times 10^4 \ (km/h^2)$$
Monday, June 7, 2004 PHYS 1441-501, Summer 2004 Dr. Jaehoon Yu
$$12$$

Meanings of Acceleration

- When an object is moving in a constant velocity (v=v₀), there is no acceleration (a=0)
 - Is there any acceleration when an object is not moving?
- When an object is moving faster as time goes on, (v=v(t)), acceleration is positive (a>0)
 - Incorrect, since the object might be moving in negative direction initially
- When an object is moving slower as time goes on, (v=v(t)), acceleration is negative (a<0)
 - Incorrect, since the object might be moving in negative direction initially
- In all cases, velocity is positive, unless the direction of the movement changes.
 - Incorrect, since the object might be moving in negative direction initially
- Is there acceleration if an object moves in a constant speed but changes direction?

One Dimensional Motion

- Let's start with the simplest case: <u>acceleration is a constant</u> $(a=a_0)$
- Using definitions of average acceleration and velocity, we can derive equations of motion (description of motion, velocity and position as a function of time)

$$\overline{a}_x = a_x = \frac{v_{xf} - v_{xi}}{t_f - t_i} \quad (\text{If } t_f = t \text{ and } t_i = 0) \quad a_x = \frac{v_{xf} - v_{xi}}{t} \quad \checkmark \quad \forall x_{xf} = v_{xi} + a_x t$$

For constant acceleration, average $v_x = \frac{v_{xi} + v_{xf}}{2} = \frac{2v_{xi} + a_xt}{2} = v_{xi} + \frac{1}{2}a_xt$

$$\overline{v}_x = \frac{x_f - x_i}{t_f - t_i} \text{ (If } t_f = t \text{ and } t_i = 0) \quad \overline{v}_x = \frac{x_f - x_i}{t} \quad \checkmark \quad X_f = x_i + \overline{v}_x t$$

Resulting Equation of Motion becomes

$$X_f = x_i + \overline{v}_x t = x_i + v_{xi}t + \frac{1}{2}a_x t^2$$

Monday, June 7, 2004

PHYS 1441-501, Summer 2004 Dr. Jaehoon Yu

One Dimensional Motion cont'd

Average velocity
$$\overline{v_x} = \frac{v_{xi} + v_{xf}}{2}$$
 $x_f = x_i + \overline{v_x}t = x_i + \left(\frac{v_{xi} + v_{xf}}{2}\right)t$
Since $a_x = \frac{v_{xf} - v_{xi}}{t}$ Solving for $t = \frac{v_{xf} - x_{xi}}{a_x}$

Substituting t in the above equation,

$$x_{f} = x_{i} + \left(\frac{v_{xf} + v_{xi}}{2}\right) \left(\frac{v_{xf} - v_{xi}}{a_{x}}\right) = x_{i} + \frac{v_{xf}^{2} - v_{xi}^{2}}{2a_{x}}$$

Resulting in

$$v_{xf}^{2} = v_{xi}^{2} + 2a_{x}\left(x_{f} - x_{i}\right)$$

Kinematic Equations of Motion on a Straight Line Under Constant Acceleration

$$v_{xf}(t) = v_{xi} + a_x t$$
Velocity as a function of time $x_f - x_i = \frac{1}{2} \overline{v}_x t = \frac{1}{2} (v_{xf} + v_{xi}) t$ Displacement as a function of velocities and time $x_f = x_i + v_{xi}t + \frac{1}{2} a_x t^2$ Displacement as a function of time, velocity, and acceleration

$$v_{xf}^{2} = v_{xi}^{2} + 2a_{x}(x_{f} - x_{i})$$

Velocity as a function of Displacement and acceleration

You may use different forms of Kinetic equations, depending on the information given to you for specific physical problems!!

How do we solve a problem using a kinematic formula for constant acceleration?

- Identify what information is given in the problem.
 - Initial and final velocity?
 - Acceleration?
 - Distance?
 - Time?
- Identify what the problem wants.
- Identify which formula is appropriate and easiest to solve for what the problem wants.
 - Frequently multiple formulae can give you the answer for the quantity you are looking for. → Do not just use any formula but use the one that can be easiest to solve.
- Solve the equation for the quantity wanted

Example 2.10

Suppose you want to design an air-bag system that can protect the driver in a head-on collision at a speed 100km/s (~60miles/hr). Estimate how fast the air-bag must inflate to effectively protect the driver. Assume the car crumples upon impact over a distance of about 1m. How does the use of a seat belt help the driver?

How long does it take for the car to come to a full stop? \square As long as it takes for it to crumple. The initial speed of the car is $v_{xi} = 100 km / h = \frac{100000m}{3600s} = 28m / s$ We also know that $v_{xf} = 0m / s$ and $\chi_f - \chi_i = 1m$ Using the kinematic formula $v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$ The acceleration is $a_x = \frac{v_{xf}^2 - v_{xi}^2}{2(x_f - x_i)} = \frac{0 - (28m/s)^2}{2 \times 1m} = -390m/s^2$ Thus the time for air-bag to deploy is $t = \frac{v_{xf} - v_{xi}}{a} = \frac{0 - (28m/s)^2}{-390m/s^2} = 0.07s$ PHYS 1441-501, Summer 2004 Monday, June 7, 2004 18

Dr. Jaehoon Yu