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PHYS 1441 – Section 501
Lecture #10
Monday, July 5, 2004

Dr. Jaehoon Yu

• Energy Diagrams
• Power
• Linear Momentum & its conservation
• Impulse & Collisions
• Center of Mass 
• CM of a group of particles

Remember the second term exam, Monday, July 19!!
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Energy Diagram and the Equilibrium of a System
One can draw potential energy as a function of position Î Energy Diagram

=sULet’s consider potential energy of a spring-ball system

A ParabolaWhat shape would this diagram be? 

x

Us

-xm xm

2

2
1 kxU =

What does this energy diagram tell you?

1. Potential energy for this system is the same 
independent of the sign of the position.  

2. The force is 0 when the slope of the potential 
energy curve is 0 at the position.

3. x=0 is the stable equilibrium of this system where 
the potential energy is minimum.

Position of a stable equilibrium corresponds to points where potential energy is at a minimum.

Position of an unstable equilibrium corresponds to points where potential energy is a maximum. 

Minimum
Î Stable 
equilibrium 

Maximum
Î unstable 
equilibrium 

2

2
1 kx
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General Energy Conservation and 
Mass-Energy Equivalence

General Principle of 
Energy Conservation

The total energy of an isolated system is conserved as 
long as all forms of energy are taken into account.

Friction is a non-conservative force and causes mechanical 
energy to change to other irreversible forms of energy.What about friction?

Principle of 
Conservation of Mass

Einstein’s Mass-
Energy equality.

However, if you add the new forms of energy altogether, the system as a 
whole did not lose any energy, as long as it is self-contained or isolated.

In the grand scale of the universe, no energy can be destroyed or 
created but just transformed or transferred from one place to another.  
Total energy of universe is constant.

In any physical or chemical process, mass is neither created nor destroyed.   
Mass before a process is identical to the mass after the process.

2mcER = How many joules does your body correspond to?
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Power
• Rate at which work is done

– What is the difference for the same car with two different engines (4 
cylinder and 8 cylinder) climbing the same hill? Î 8 cylinder car climbs 
up faster

Is the total amount of work done by the engines different? NO
Then what is different? The rate at which the same amount of work 

performed is higher for 8 cylinder than 4.

Average power WP
t

∆
=

∆

P ≡Instantaneous power 

Unit?  / WattssJ = WattsHP 7461 =
What do power companies sell? 

Energy 

1kWH =

0
lim

t

W
t∆ →

∆
=

∆ 0
lim cos

t

sF
t

θ
∆ →

∆
=

∆∑ cosF v θ∑

61000 3600 3.6 10Watts s J× = ×
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Energy Loss in Automobile
Automobile uses only at 13% of its fuel to propel the vehicle.  

Why?
67% in the engine: 
1. Incomplete burning
2. Heat 
3. Sound

13% used for balancing energy loss related to moving vehicle, like air 
resistance and road friction to tire, etc

Two frictional forces involved in moving vehicles

P =

1450carm kg=

Coefficient of Rolling Friction; µ=0.016

16% in friction in mechanical parts

4% in operating other crucial parts 
such as oil and fuel pumps, etc

Air Drag art fff +=222 647.02293.15.0
2
1

2
1 vvAvDfa =×××== ρ Total Resistance

Total power to keep speed v=26.8m/s=60mi/h

Power to overcome each component of resistance rP =

( ) kWvfP aa 5.128.267.464 =⋅==

Weight =
227n mg Nµ µ= =

tf v = ( )691 26.8 18.5N kW⋅ =

rf v =( )227 26.8 6.08kW⋅ =

14200mg N=
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Linear Momentum
The principle of energy conservation can be used to solve problems 
that are harder to solve just using Newton’s laws.   It is used to 
describe motion of an object or a system of objects.
A new concept of linear momentum can also be used to solve physical 
problems, especially the problems involving collisions of objects.

vmp =
Linear momentum of an object whose mass is m 
and is moving at a velocity of v is defined as 

1. Momentum is a vector quantity.
2. The heavier the object the higher the momentum
3. The higher the velocity the higher the momentum
4. Its unit is kg.m/s 

What can you tell from this 
definition about momentum?

What else can use see from the 
definition?  Do you see force?

The change of momentum in a given time interval

p
t

∆
=

∆
0mv mv

t
−

=
∆

( )0m v v

t

−
=

∆

vm
t

∆
=

∆
F∑ma =
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Linear Momentum and Forces
What can we learn from this Force-momentum 
relationship?

Something else we can do 
with this relationship.  What 
do you think it is?

pF
t

∆
=

∆∑

The relationship can be used to study 
the case where the mass changes as a 
function of time.

Can you think of a 
few cases like this?

Motion of a meteorite Motion of a rocket 

• The rate of the change of particle’s momentum is the same as 
the net force exerted on it.

• When net force is 0, the particle’s linear momentum is 
constant as a function of time.

• If a particle is isolated, the particle experiences no net force, 
therefore its momentum does not change and is conserved.
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Linear Momentum Conservation

221121 vmvmpp ii +=+

'
22

'
1121 vmvmpp ff +=+
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Conservation of Linear Momentum in a Two 
Particle System

Consider a system with two particles that does not have any external 
forces exerting on it.    What is the impact of Newton’s 3rd Law?

Now how would the momenta
of these particles look like?

If particle#1 exerts force on particle #2, there must be another force that 
the particle #2 exerts on #1 as the reaction force.   Both the forces are 
internal forces and the net force in the SYSTEM is still 0. 

Let say that the particle #1 has momentum 
p1 and #2 has p2 at some point of time.

Using momentum-
force relationship

1
21

pF
t

∆
=
∆

And since net force 
of this system is 0

constpp =+ 12Therefore

∑F

The total linear momentum of the system is conserved!!!

and

2112 FF += 2 1p p
t t

∆ ∆
= +
∆ ∆

( )2 1p p
t
∆

= +
∆

0=

2
12

pF
t

∆
=
∆



Monday, July 5, 2004 PHYS 1441-501, Summer 2004
Dr. Jaehoon Yu

10

More on Conservation of Linear Momentum in 
a Two Particle System

What does this mean? As in the case of energy conservation, this means 
that the total vector sum of all momenta in the 
system is the same before and after any interaction

Mathematically this statement can be written as 

Whenever two or more particles in an 
isolated system interact, the total 
momentum of the system remains constant.

constppp =+=∑ 12

From the previous slide we’ve learned that the total 
momentum of the system is conserved if no external 
forces are exerted on the system.

2 1iip p+ =

This can be generalized into 
conservation of linear momentum 
in many particle systems.

∑∑ =
system

xf
system

xi PP ∑∑ =
system

yf
system

yi PP ∑∑ =
system

zf
system

zi PP

2 1f fp p+
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Example for Linear Momentum Conservation
Estimate an astronaut’s resulting velocity after he throws his book to a 
direction in the space to move to a direction.

ip

From momentum conservation, we can writevA vB

Assuming the astronaut’s mass if 70kg, and the book’s 
mass is 1kg and using linear momentum conservation

=Av

Now if the book gained a velocity 
of 20 m/s in +x-direction, the 
Astronaut’s velocity is

=Av

BBAA vmvm +=

=−
A

BB

m
vm

Bv
70
1

−

( )=− i20
70
1

( )smi /  3.0−

0= fp=
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Impulse and Linear Momentum 

By summing the above 
equation in a time interval ti to 
tf, one can obtain impulse I.

Impulse of the force F acting on a particle over the time 
interval ∆t=tf-ti is equal to the change of the momentum of 
the particle caused by that force.   Impulse is the degree of 
which an external force changes momentum.

The above statement is called the impulse-momentum theorem and is equivalent to Newton’s second law.  

pF
t

∆
=

∆
Net force causes change of momentum Î
Newton’s second law

So what do you 
think an impulse is?

I F t p≡ ∆ =∆

What are the 
dimension and 
unit of Impulse?  
What is the 
direction of an 
impulse vector? 

Defining a time-averaged force 

1
i

i
F F t

t
≡ ∆
∆ ∑

Impulse can be rewritten 

tFI ∆≡

If force is constant  

tFI ∆≡
It is generally assumed that the impulse force acts on a 
short time but much greater than any other forces present.

p F t∆ = ∆

f ip p p∆ = − F t= ∆
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Example 7-5
(a) Calculate the impulse experienced when a 70 kg person lands on firm ground 
after jumping from a height of 3.0 m.  Then estimate the average force exerted on 
the person’s feet by the ground, if the landing is (b) stiff-legged and (c) with bent 
legs. In the former case, assume the body moves 1.0cm during the impact, and in 
the second case, when the legs are bent, about 50 cm.

We don’t know the force.   How do we do this?
Obtain velocity of the person before striking the ground.

KE PE= −∆ 21
2

mv = ( )img y y− − = imgy

v =
Solving the above for velocity v, we obtain

2 igy = 2 9.8 3 7.7 /m s⋅ ⋅ =

Then as the person strikes the ground, the 
momentum becomes 0 quickly giving the impulse

I F t= ∆ =

70 7.7 / 540kg m s N s= − ⋅ = − ⋅

p∆ = f ip p− = 0 mv− =
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Example 7-5 cont’d
In coming to rest, the body decelerates from 7.7m/s to 0m/s in a distance d=1.0cm=0.01m. 

The average speed during this period is v =

The time period the collision lasts is t∆ =

0
2

iv+
=

7.7 3.8 /
2

m s=

d
v
= 30.01 2.6 10

3.8 /
m s

m s
−= ×

Since the magnitude of impulse is I F t= ∆ = 540N s⋅

The average force on the feet during 
this landing is F =

I
t
=

∆
5

3

540 2.1 10
2.6 10

N− = ×
×

How large is this average force? 2 270 9.8 / 6.9 10Weight kg m s N= ⋅ = ×
5 22.1 10 304 6.9 10F N N= × = × × = 304 Weight×

If landed in stiff legged, the feet must sustain 300 times the body weight.  The person will 
likely break his leg.
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Example for Impulse
In a crash test, an automobile of mass 1500kg collides with a wall.  The initial and 
final velocities of the automobile are vi=-15.0i m/s and vf=2.60i m/s.  If the collision 
lasts for 0.150 seconds, what would be the impulse caused by the collision and the 
average force exerted on the automobile?

ip

Let’s assume that the force involved in the collision is a lot larger than any other 
forces in the system during the collision.   From the problem, the initial and final 
momentum of the automobile before and after the collision is 

Therefore the impulse on the 
automobile due to the collision  is

The average force exerted on the 
automobile during the collision  is

F

I

ivm= ( ) smkgii / 225000.151500 ⋅−=−×=

fp fvm= ( ) smkgii / 390060.21500 ⋅=×=

p∆= ipp
f
−= ( ) smkgi /  225003900 ⋅+=

smkgismkgi / 1064.2/ 26400 4 ⋅×=⋅=

t
p

∆
∆

=
150.0

1064.2 4×
=

N 1076.1/ 1076.1 525 ismkgi ×=⋅×=
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Collisions 

Consider a case of a collision 
between a proton on a helium ion. 

The collisions of these ions never involves a 
physical contact because the electromagnetic 
repulsive force between these two become great 
as they get closer causing a collision.

Generalized collisions must cover not only the physical contact but also the collisions 
without physical contact such as that of electromagnetic ones in a microscopic scale.

211p F t∆ = ∆t

F F12

F21

Assuming no external forces, the force 
exerted on particle 1 by particle 2, F21, 
changes the momentum of particle 1 by  

Likewise for particle 2 by particle 1  122p F t∆ = ∆

Using Newton’s 3rd law we obtain   

So the momentum change of the system in the 
collision is 0 and the momentum is conserved

2p∆

p∆

12F t= ∆ 21F t=− ∆ 1p∆−=

21 pp ∆+∆=

systemp 21 pp += constant=

0=
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Elastic and Inelastic Collisions 

Collisions are classified as elastic or inelastic by the conservation of kinetic 
energy before and after the collisions.

A collision in which the total kinetic energy and momentum 
are the same before and after the collision.  

Momentum is conserved in any collisions as long as external forces negligible.

Elastic 
Collision

Two types of inelastic collisions:Perfectly inelastic and inelastic  

Perfectly Inelastic: Two objects stick together after the collision 
moving at a certain velocity together.

Inelastic: Colliding objects do not stick together after the collision but 
some kinetic energy is lost.

Inelastic 
Collision

A collision in which the total kinetic energy is not the same 
before and after the collision, but momentum is.

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.  
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Elastic and Perfectly Inelastic Collisions 
In perfectly Inelastic collisions, the objects stick 
together after the collision, moving together.  
Momentum is conserved in this collision, so the 
final velocity of the stuck system is

How about elastic collisions?

ii vmvm 2211 +

In elastic collisions, both the 
momentum and the kinetic energy 
are conserved. Therefore, the 
final speeds in an elastic collision 
can be obtained in terms of initial 
speeds as 

ii vmvm 2211 +

( )2
1

2
11 fi vvm −

( ) ( )fifi vvmvvm 222111 −=−

iif v
mm

mv
mm
mmv 2

21

2
1

21

21
1

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=

fvmm )( 21 +=

)( 21

2211

mm
vmvmv ii

f
+
+

=

ff vmvm 2211 +=

2
22

2
11 2

1
2
1

ii vmvm + 2
22

2
11 2

1
2
1

ff vmvm +=

( )2
2

2
22 fi vvm −=

( )( )fifi vvvvm 11111 +− ( )( )fifi vvvvm 22222 +−=

From momentum 
conservation above

iif v
mm
mmv

mm
mv 2

21

21
1

21

1
2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
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Example for Collisions
A car of mass 1800kg stopped  at a traffic light is rear-ended by a 900kg car, and 
the two become entangled.  If the lighter car was moving at 20.0m/s before the 
collision what is the velocity of the entangled cars after the collision?

ip
The momenta before and after the collision are

What can we learn from these equations 
on the direction and magnitude of the 
velocity before and after the collision?

m1

20.0m/s

m2

vf
m1

m2

Since momentum of the system must be conserved

fi pp =

The cars are moving in the same direction as the lighter 
car’s original direction to conserve momentum. 
The magnitude is inversely proportional to its own mass.

Before collision

After collision

ii vmvm 2211 += ivm 220 +=

fp ff vmvm 2211 += ( ) fvmm 21 +=

( ) fvmm 21 + ivm 22=

fv ( )21

22

mm
vm i

+
= smii / 67.6

1800900
0.20900

=
+
×

=
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Two dimensional Collisions 
In two dimension, one can use components of momentum to apply 
momentum conservation to solve physical problems.

fii vmvmvmvm f 221 21121 +=+

2
1 12

1
i

vm

m2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

Consider a system of two particle collisions and scatters in 
two dimension as shown in the picture.  (This is the case at 
fixed target accelerator experiments.)  The momentum 
conservation tells us:

ii vmvm 21 21 +

And for the elastic conservation, 
the kinetic energy is conserved:

What do you think 
we can learn from 
these relationships?

fxfx vmvm 2211 += φθ coscos 2211 ff vmvm +=

iyvm 11 0= fyfy vmvm 2211 += φθ sinsin 2211 ff vmvm −=

ivm 11=

ixvm 11

2
22

2
11 2

1
2
1

ff vmvm +=

fxfxixix vmvmvmvm 22112211 +=+

fyfyiyiy vmvmvmvm 22112211 +=+

x-comp.

y-comp.
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Example of Two Dimensional Collisions
Proton #1 with a speed 3.50x105 m/s collides elastically with proton #2 initially at 
rest.  After the collision, proton #1 moves at an angle of 37o to the horizontal axis 
and proton #2 deflects at an angle φ to the same axis.  Find the final speeds of the 
two protons and the scattering angle of proton #2, φ.

Since both the particles are protons m1=m2=mp.
Using momentum conservation, one obtainsm2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

ipvm 1

Canceling mp and put in all known quantities, one obtains

smv f /1080.2 5
1 ×=

From kinetic energy 
conservation:

( ) (3)    1050.3 2
2

2
1

25
ff vv +=×

Solving Eqs. 1-3 
equations, one gets

(1)   1050.3cos37cos 5
21 ×=+ φff vv ο

Do this at 
home☺

φθ coscos 21 fpfp vmvm +=

φθ sinsin 21 fpfp vmvm − 0=

x-comp.

y-comp.

(2)    sin37sin 21 φff vv =ο

smv f /1011.2 5
2 ×=

ο0.53=φ
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Center of Mass
We’ve been solving physical problems treating objects as sizeless
points with masses, but in realistic situation objects have shapes 
with masses distributed throughout the body.    

Center of mass of a system is the average position of the system’s mass and 
represents the motion of the system as if all the mass is on the point. 

Consider a massless rod with two balls attached at either end.

21

2211

mm
xmxmxCM +

+
≡

The total external force exerted on the system of 
total mass M causes the center of mass to move at 
an acceleration given by                         as if all 
the mass of the system is concentrated on the 
center of mass.

MFa /∑=
What does above 
statement tell you 
concerning forces being 
exerted on the system?

m1 m2
x1 x2

The position of the center of mass of this system is 
the mass averaged position of the systemxCM CM is closer to the 

heavier object
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Center of Mass of a Rigid Object
The formula for CM can be expanded to Rigid Object or a 
system of many particles 

A rigid body – an object with shape 
and size with mass spread throughout 
the body, ordinary objects – can be 
considered as a group of particles with 
mass mi densely spread throughout 
the given shape of the object

∑
∑

=
+⋅⋅⋅++
+⋅⋅⋅++

=

i
i

i
ii

n

nn
CM m

xm

mmm
xmxmxmx

21

2211

∑
∑

=

i
i

i
ii

CM m

ym
y

The position vector of the 
center of mass of a many 
particle system is 

CMr

M

xm
x i

ii

CM

∑ ∆
≈

CMx

∫= dmr
M

rCM
1

∆mi

ri
rCM

∑
∑

=

i
i

i
ii

CM m

zm
z

kzjyix CMCMCM ++=

∑
∑∑∑ ++

=

i
i

i
ii

i
ii

i
ii

m

kzmjymixm  

M

rm
r i

ii

CM

∑
=

M

xm
i

ii

mi

∑ ∆
=

→∆ 0
lim ∫= xdm

M
1
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Example 7-11
Thee people of roughly equivalent mass M on a lightweight (air-filled) 
banana boat sit along the x axis at positions x1=1.0m, x2=5.0m, and 
x3=6.0m.  Find the position of CM. 

Using the formula 
for CM

∑
∑

=

i
i

i
ii

CM m

xm
x

1.0M ⋅ 12.0
3

M
M

=
                                         

=
M M M+ +

4.0( )m=
5.0M+ ⋅ 6.0M+ ⋅
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Example for Center of Mass in 2-D
A system consists of three particles as shown in the figure.  Find the 
position of the center of mass of this system.

Using the formula for CM for each 
position vector componentm1

y=2 (0,2)

m2

x=1

(1,0)
m3
x=2

(2,0)
∑
∑

=

i
i

i
ii

CM m

xm
x

One obtains

CMx

CMr

If kgmmkgm 1;2 321 ===

jijirCM +=
+

= 75.0
4

43

(0.75,4)
rCM ∑

∑
=

i
i

i
ii

CM m

ym
y

∑
∑

=

i
i

i
ii

m

xm

321

332211

mmm
xmxmxm

++
++

=
321

32 2
mmm

mm
++

+
=

CMy ∑
∑

=

i
i

i
ii

m

ym

321

332211

mmm
ymymym

++
++

=
321

12
mmm

m
++

=

jyix CMCM +=  
( )

321

132 2 2
mmm

jmimm
++
++

=
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Motion of a Diver and the Center of Mass

Diver performs a simple dive.
The motion of the center of mass 
follows a parabola since it is a 
projectile motion.

Diver performs a complicated dive.
The motion of the center of mass 
still follows the same parabola since 
it still is a projectile motion.

The motion of the center of mass 
of the diver is always the same. 
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The net effect of these small gravitational 
forces is equivalent to a single force acting on 
a point (Center of Gravity) with mass M.

Center of Mass and Center of Gravity
The center of mass of any symmetric object lies on an 
axis of symmetry and on any plane of symmetry, if 
object’s mass is evenly distributed throughout the body.

Center of Gravity

How do you think you 
can determine the CM of 
objects that are not 
symmetric?

gF
∆mi

CM

Axis of 
symmetryOne can use gravity to locate CM.

1. Hang the object by one point and draw a vertical line 
following a plum-bob.

2. Hang the object by another point and do the same.
3. The point where the two lines meet is the CM. 

∆mig

Since a rigid object can be considered as collection 
of small masses, one can see the total gravitational 
force exerted on the object as 

What does this 
equation tell you?

∑=
i

iF ∑ ∆=
i

i gm gM=

The CoG is the point in an object as if all the gravitational force is acting on!
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Motion of a Group of Particles
We’ve learned that the CM of a system can represent the motion of a system.  
Therefore, for an isolated system of many particles in which the total mass 
M is preserved, the velocity, total momentum, acceleration of the system are

Velocity of the system CMv

Total Momentum 
of the system CMp

Acceleration of 
the system CMa

External force exerting 
on the system ext

F∑

If net external force is 0 0=∑ ext
F System’s momentum 

is conserved.

What about the 
internal forces?

CMr
t

∆
=

∆

1
iim r

t M
∆ ⎛ ⎞= ⎜ ⎟∆ ⎝ ⎠

∑ 1 i
i

rm
M t

∆
=

∆∑ M
vm ii∑=

CMvM=
M

vm
M

ii∑= ∑= ii vm toti
pp ==∑

CMv
t

∆
=

∆

1
iim v

t M
∆ ⎛ ⎞= ⎜ ⎟∆ ⎝ ⎠

∑ 1 i
i

vm
M t

∆
=

∆∑ M
am ii∑=

CMaM= ∑= ii am totp
t

∆
=

∆

totp
t

∆
=

∆
const=totp


