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PHYS 1441 – Section 501
Lecture #11

Wednesday, July 7, 2004
Dr. Jaehoon Yu

• Collisions 
• Center of Mass 
• CM of a group of particles
• Fundamentals on Rotation
• Rotational Kinematics
• Relationships between linear and angular quantities

Remember the second term exam, Monday, July 19!!

Today’s homework is HW#5, due 6pm next Wednesday!!
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Announcements
• Quiz results:

– Class average: 57.2
– Want to know how you did compared to Quiz #1?

• Average Quiz #1: 36.2
– Top score: 90

• I am impressed of your marked improvement
• Keep this trend up, you will all get 100% soon…
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Elastic and Inelastic Collisions 

Collisions are classified as elastic or inelastic by the conservation of kinetic 
energy before and after the collisions.

A collision in which the total kinetic energy and momentum 
are the same before and after the collision.  

Momentum is conserved in any collisions as long as external forces negligible.

Elastic 
Collision

Two types of inelastic collisions:Perfectly inelastic and inelastic  

Perfectly Inelastic: Two objects stick together after the collision 
moving at a certain velocity together.
Inelastic: Colliding objects do not stick together after the collision but 
some kinetic energy is lost.

Inelastic 
Collision

A collision in which the total kinetic energy is not the same 
before and after the collision, but momentum is.

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.  
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Example for Collisions
A car of mass 1800kg stopped  at a traffic light is rear-ended by a 900kg car, and 
the two become entangled.  If the lighter car was moving at 20.0m/s before the 
collision what is the velocity of the entangled cars after the collision?

ip
The momenta before and after the collision are

What can we learn from these equations 
on the direction and magnitude of the 
velocity before and after the collision?

m1

20.0m/s

m2

vf
m1

m2

Since momentum of the system must be conserved

fi pp =

The cars are moving in the same direction as the lighter 
car’s original direction to conserve momentum. 
The magnitude is inversely proportional to its own mass.

Before collision

After collision

ii vmvm 2211 += ivm 220 +=

fp ff vmvm 2211 += ( ) fvmm 21 +=

( ) fvmm 21 + ivm 22=

fv ( )21

22

mm
vm i

+
= smii / 67.6

1800900
0.20900

=
+
×
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Two dimensional Collisions 
In two dimension, one can use components of momentum to apply 
momentum conservation to solve physical problems.

fii vmvmvmvm f 221 21121 +=+

2
1 12

1
i
vm

m2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

Consider a system of two particle collisions and scatters in 
two dimension as shown in the picture.  (This is the case at 
fixed target accelerator experiments.)  The momentum 
conservation tells us:

ii vmvm 21 21 +

And for the elastic conservation, 
the kinetic energy is conserved:

What do you think 
we can learn from 
these relationships?

fxfx vmvm 2211 += φθ coscos 2211 ff vmvm +=

iyvm 11 0= fyfy vmvm 2211 += φθ sinsin 2211 ff vmvm −=

ivm 11=

ixvm 11

2
22

2
11 2

1
2
1

ff vmvm +=

fxfxixix vmvmvmvm 22112211 +=+

fyfyiyiy vmvmvmvm 22112211 +=+

x-comp.

y-comp.
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Example of Two Dimensional Collisions
Proton #1 with a speed 3.50x105 m/s collides elastically with proton #2 initially at 
rest.  After the collision, proton #1 moves at an angle of 37o to the horizontal axis 
and proton #2 deflects at an angle φ to the same axis.  Find the final speeds of the 
two protons and the scattering angle of proton #2, φ.

Since both the particles are protons m1=m2=mp.
Using momentum conservation, one obtainsm2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

ipvm 1

Canceling mp and put in all known quantities, one obtains

smv f /1080.2 5
1 ×=

From kinetic energy 
conservation:

( ) (3)    1050.3 2
2

2
1

25
ff vv +=×

Solving Eqs. 1-3 
equations, one gets

(1)   1050.3cos37cos 5
21 ×=+ φff vv ο

Do this at 
home☺

φθ coscos 21 fpfp vmvm +=

φθ sinsin 21 fpfp vmvm − 0=

x-comp.

y-comp.

(2)    sin37sin 21 φff vv =ο

smv f /1011.2 5
2 ×=

ο0.53=φ
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Center of Mass
We’ve been solving physical problems treating objects as sizeless
points with masses, but in realistic situation objects have shapes 
with masses distributed throughout the body.    

Center of mass of a system is the average position of the system’s mass and 
represents the motion of the system as if all the mass is on the point. 

Consider a massless rod with two balls attached at either end.

CMx ≡

The total external force exerted on the system of 
total mass M causes the center of mass to move at 
an acceleration given by                         as if all 
the mass of the system is concentrated on the 
center of mass.

MFa /∑=
What does above 
statement tell you 
concerning forces being 
exerted on the system?

m1 m2
x1 x2

The position of the center of mass of this system is 
the mass averaged position of the systemxCM CM is closer to the 

heavier object
1 1 2 2

1 2

m x m x
m m

+
+
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Center of Mass of a Rigid Object
The formula for CM can be expanded to Rigid Object or a 
system of many particles 

A rigid body – an object with shape 
and size with mass spread throughout 
the body, ordinary objects – can be 
considered as a group of particles with 
mass mi densely spread throughout 
the given shape of the object

∑
∑
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The position vector of the 
center of mass of a many 
particle system is 

CMr

M

xm
x i

ii

CM

∑ ∆
≈

CMx

∫= dmr
M

rCM
1

∆mi

ri
rCM

∑
∑

=

i
i

i
ii

CM m

zm
z

kzjyix CMCMCM ++=

∑
∑∑∑ ++

=

i
i

i
ii

i
ii

i
ii

m

kzmjymixm  

M

rm
r i

ii

CM

∑
=

M

xm
i

ii

mi

∑ ∆
=

→∆ 0
lim ∫= xdm

M
1



Wednesday, July 7, 2004 PHYS 1441-501, Summer 2004
Dr. Jaehoon Yu

9

Example 7-11
Thee people of roughly equivalent mass M on a lightweight (air-filled) 
banana boat sit along the x axis at positions x1=1.0m, x2=5.0m, and 
x3=6.0m.  Find the position of CM. 

Using the formula 
for CM

CMx =

1.0M ⋅ 12.0
3
M
M

=
                                         

=
M M M+ +

4.0( )m=
5.0M+ ⋅ 6.0M+ ⋅

i i
i

i
i

m x

m

∑
∑
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Example for Center of Mass in 2-D
A system consists of three particles as shown in the figure.  Find the 
position of the center of mass of this system.

Using the formula for CM for each 
position vector componentm1

y=2 (0,2)

m2

x=1

(1,0)
m3
x=2

(2,0)
∑
∑

=

i
i

i
ii

CM m

xm
x

One obtains

CMx

CMr
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Motion of a Diver and the Center of Mass

Diver performs a simple dive.
The motion of the center of mass 
follows a parabola since it is a 
projectile motion.

Diver performs a complicated dive.
The motion of the center of mass 
still follows the same parabola since 
it still is a projectile motion.

The motion of the center of mass 
of the diver is always the same. 


