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PHYS 1441 – Section 501
Lecture #13

Wednesday, July 14, 2004
Dr. Jaehoon Yu

• Rolling Motion
• Torque
• Moment of Inertia
• Rotational Kinetic Energy
• Angular Momentum and Its Conservation
• Conditions for Mechanical Equilibrium

Today’s homework is #6 due 7pm, Friday, July 23!!

Remember the second term exam, Monday, July 19!!
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Using what we have learned in the previous slide, how 
would you define the angular displacement? =∆θ
Angular Displacement, Velocity, and Acceleration

How about the average angular speed? ≡ω

And the instantaneous angular speed? ≡ω

By the same token, the average angular 
acceleration

≡α

And the instantaneous angular 
acceleration? ≡α

When rotating about a fixed axis, every particle on a rigid object rotates through  
the same angle and has the same angular speed and angular acceleration.
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How about the acceleration?

v rω=

Two
How many different linear accelerations do you see 
in a circular motion and what are they?

Total linear acceleration is

Since the tangential speed v is

What does this 
relationship tell you?

Although every particle in the object has the same angular 
acceleration, its tangential acceleration differs proportional to its 
distance from the axis of rotation.

Tangential, at, and the radial acceleration, ar.

ta
The magnitude of tangential 
acceleration at is

The radial or centripetal acceleration ar is ra
What does 
this tell you?

The father away the particle is from the rotation axis, the more radial 
acceleration it receives.  In other words, it receives more centripetal force.
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Rolling Motion of a Rigid Body
What is a rolling motion?

To simplify the discussion, let’s 
make a few assumptions

Let’s consider a cylinder rolling without slipping on a flat surface

A more generalized case of a motion where the 
rotational axis moves together with the object

Under what condition does this “Pure Rolling” happen?

The total linear distance the CM of the cylinder moved is

Thus the linear 
speed of the CM is

A rotational motion about the moving axis
1. Limit our discussion on very symmetric 

objects, such as cylinders, spheres, etc
2. The object rolls on a flat surface

R θ s

s=Rθ

θRs=

dt
dsvCM =

Condition for “Pure Rolling”
dt
dR θ

= ωR=
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More Rolling Motion of a Rigid Body

As we learned in the rotational motion, all points in a rigid body 
moves at the same angular speed but at a different linear speed.

At any given time the point that comes to P has 0 linear 
speed while the point at P’ has twice the speed of CM

The magnitude of the linear acceleration of the CM is

A rolling motion can be interpreted as the sum of Translation and Rotation

CMa

Why??
P

P’

CM
vCM

2vCM

CM is moving at  the same speed at all times.

P
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v=0

v=Rω

=
P

P’

CM

2vCM

vCM

CMv
t

∆
=

∆
R
t
ω∆

=
∆

αR=



Wednesday, July 14, 2004 PHYS 1441-501, Summer 2004
Dr. Jaehoon Yu

6

Torque
Torque is the tendency of a force to rotate an object about an axis.  
Torque, τ, is a vector quantity.

≡τMagnitude of torque is defined as the product of the force 
exerted on the object to rotate it and the moment arm.

F
φ

d

Line of 
Action

Consider an object pivoting about the point P
by the force F being exerted at a distance r. 

P

r

Moment 
arm

The line that extends out of the tail of the force 
vector is called the line of action.
The perpendicular distance from the pivoting point 
P to the line of action is called Moment arm.

When there are more than one force being exerted on certain 
points of the object, one can sum up the torque generated by each 
force vectorially.  The convention for sign of the torque is positive if 
rotation is in counter-clockwise and negative if clockwise. 

d2

F2

21 τττ +=∑
2211 dFdF −=

=φsinrF Fd
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R1

Example for Torque
A one piece cylinder is shaped as in the figure with core section protruding from the 
larger drum.  The cylinder is free to rotate around the central axis shown in the picture.   
A rope wrapped around the drum whose radius is R1 exerts force F1 to the right on the 
cylinder, and another force exerts F2 on the core whose radius is R2 downward on the 
cylinder.  A) What is the net torque acting on the cylinder about the rotation axis?

The torque due to F1 111 FR−=τ

Suppose F1=5.0 N, R1=1.0 m, F2= 15.0 N, and R2=0.50 m.  What is the net torque 
about the rotation axis and which way does the cylinder rotate from the rest?

R2

F1

F2

and due to F2 222 FR=τ

Using the 
above result

=+=∑ 21 τττSo the total torque acting on 
the system by the forces is

2211 FRFR +−=∑τ The cylinder rotates in 
counter-clockwise.

2211 FRFR +−

mN •=×+×−= 5.250.00.150.10.5
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Moment of Inertia 
Rotational Inertia:

What are the dimension and 
unit of Moment of Inertia?

∑≡
i

iirmI 2

2mkg⋅[ ]2ML

Measure of resistance of an object to 
changes in its rotational motion.  
Equivalent to mass in linear motion.

Determining Moment of Inertia is extremely important for 
computing equilibrium of a rigid body, such as a building.

dmrI ∫≡ 2For a group 
of particles

For a rigid 
body



Wednesday, July 14, 2004 PHYS 1441-501, Summer 2004
Dr. Jaehoon Yu

9

Torque & Angular Acceleration
Let’s consider a point object with mass m rotating on a circle.

What does this mean?

The tangential force Ft and radial force Fr

The tangential force Ft is

What do you see from the above relationship?

m
r

Ft

Fr What forces do you see in this motion?

tF
The torque due to tangential force Ft is rFt=τ

ατ I=
Torque acting on a particle is proportional to 
the angular acceleration.

What law do you see from 
this relationship?

Analogs to Newton’s 2nd law of motion 
in rotation.

αmr=
rmat= α2mr= αI=

tma=
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Rotational Kinetic Energy
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is? 

Since a rigid body is a collection of masslets, the total kinetic energy of the 
rigid object is

Since moment of Inertia, I, is defined as

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is

ri

mi

θ

O x

y vi

iK

RK

∑=
i

iirmI 2

2= ωIKR 2
1The above expression is simplified as

2

2
1

iivm= 2= ω2
2
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⎠
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2

2
1



Wednesday, July 14, 2004 PHYS 1441-501, Summer 2004
Dr. Jaehoon Yu

11

Example for Moment of Inertia
In a system consists of four small spheres as shown in the figure, assuming the radii are 
negligible and the rods connecting the particles are massless, compute the moment of 
inertia and the rotational kinetic energy when the system rotates about the y-axis at ω.

I

Since the rotation is about y axis, the moment of 
inertia about y axis, Iy, is

RKThus, the rotational kinetic energy is 

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O.

x

y

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible.Why are some 0s?

M Ml l

m

m

b

b
O

I RK

2
i

i
irm∑= 2Ml= 22Ml=

2

2
1 ωI= ( ) 222

2
1 ωMl= 22ωMl=

2
i

i
irm∑= 2Ml= ( )222 mbMl += 2

2
1 ωI= ( ) 222 22

2
1 ωmbMl += ( ) 222 ωmbMl +=

2Ml+ 20m+ ⋅ 20m+ ⋅

2M l+ 2mb+ 2mb+
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Kinetic Energy of a Rolling Sphere

Since vCM=Rω

Let’s consider a sphere with radius R 
rolling down a hill without slipping.

=K

R

xh
θ

vCM

ω

21
2

CM
CM

vI
R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

Since the kinetic energy at the bottom of the hill must 
be equal to the potential energy at the top of the hill

What is the speed of the 
CM in terms of known 
quantities and how do you 
find this out?

K

2
22

1
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CM vM
R
I

⎟
⎠
⎞
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Angular Momentum and Its Conservation

Remember under what condition the linear momentum is conserved?

Linear momentum is conserved when the net external force is 0.

i fL L=

Three important conservation laws 
for isolated system that does not get 
affected by external forces

Angular momentum of the system before and 
after a certain change is the same.

By the same token, the angular momentum of a system 
is constant in both magnitude and direction, if the 
resultant external torque acting on the system is 0. 

iL

constp =

=∑ extτ

What does this mean?

Mechanical Energy

Linear Momentum

Angular Momentum

constL =

dt
pdF ==∑ 0

=
dt
Ld

0

fL= constant=

i fp p=

i i f fK U K U+ = +

Angular Momentum: Tendency to keep the rotational Motion L ≡ Iϖ
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Effect of Angular Momentum Conservation
Large I
Small ω

Small I
Large ω

Small I
Large ω
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Example for Angular Momentum Conservation
A star rotates with a period of 30days about an axis through its center.  After the star 

undergoes a supernova explosion, the stellar core, which had a radius of 1.0x104km, collapses 
into a neutron start of radius 3.0km.  Determine the period of rotation of the neutron star.  

T
πω 2

=

What is your guess about the answer? The period will be significantly shorter, 
because its radius got smaller.

fi LL =

Let’s make some assumptions: 1. There is no torque acting on it
2. The shape remains spherical
3. Its mass remains constant

The angular speed of the star with the period T is

Using angular momentum 
conservation

Thus fω

ffi II ωωι =

f

i

I
I ιω

=
if

i

Tmr
mr π2

2

2

=

fT
fω
π2

= i
i

f T
r
r

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

2

days30
100.1
0.3 2

4 ×⎟
⎠
⎞

⎜
⎝
⎛

×
= days6107.2 −×= s23.0=
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.

Momentum
RotationalKineticKinetic Energy

Power
WorkWorkWork
TorqueForceForce

Acceleration
Speed

Angle     (Radian)DistanceLength of motion

Moment of InertiaMassMass
RotationalLinearQuantities

2I mr=

rv
t

∆
=
∆ t

θω ∆
=

∆
va
t

∆
=

∆ t
ωα ∆

=
∆

maF = ατ I=
cosW Fd θ=

vFP ⋅= τω=P

2

2
1 mvK = 2

2
1 ωIK R =

L
M

θ

W τθ=

vmp = ωIL =
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Conditions for Equilibrium
What do you think does the term “An object is at its equilibrium” mean?

∑ = 0F

The object is either at rest (Static Equilibrium) or its center of mass 
is moving with a constant velocity (Dynamic Equilibrium). 

Is this it?   

When do you think an object is at its equilibrium?

Translational Equilibrium: Equilibrium in linear motion 

The above condition is sufficient for a point-like particle to be at its static 
equilibrium.   However for object with size this is not sufficient.   One more 
condition is needed.  What is it? 

Let’s consider two forces equal magnitude but opposite direction acting 
on a rigid object as shown in the figure.   What do you think will happen?

CM
d

d

F

-F

The object will rotate about the CM. The net torque 
acting on the object about any axis must be 0. 

For an object to be at its static equilibrium, the object should not 
have linear or angular speed. 

∑ = 0τ

0=CMv 0=ω
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More on Conditions for Equilibrium
To simplify the problem, we will only deal with forces acting on x-y plane, giving torque 
only along z-axis.   What do you think the conditions for equilibrium be in this case? 

The six possible equations from the two vector equations turns to three equations.

What happens if there are many forces exerting on the object?

∑ = 0F ∑ = 0τ∑ = 0xF ∑ = 0zτ

O

F
1

F
4

F3

F 2

F5

r5 O’
r’

If an object is at its translational static equilibrium, 
and if the net torque acting on the object is 0 
about one axis, the net torque must be 0 about 
any arbitrary axis.

∑ = 0yF

Why is this true?
Because the object is not movingnot moving, no matter what 
the rotational axis is, there should not be a motion.  
It is simply a matter of mathematical calculation.
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Example for Mechanical Equilibrium
A uniform 40.0 N board supports a father and daughter weighing 800 N and 350 N, 
respectively.   If the support (or fulcrum) is under the center of gravity of the board and 
the father is 1.00 m from CoG, what is the magnitude of normal force n exerted on the 
board by the support?

Since there is no linear motion, this system 
is in its translational equilibriumF D

n
1m x

Therefore the magnitude of the normal force n

Determine where the child should sit to balance the system.
The net torque about the fulcrum 
by the three forces are τ
Therefore to balance the system 
the daughter must sit x

∑ xF 0=

∑ yF gM B= 0=gM F+ gM D+ n−

m
gM
gM

D

F 00.1⋅= mm 29.200.1
350
800

=⋅=

0⋅= gM B 00.1⋅+ gM F xgM D ⋅− 0=

N11903508000.40 =++=

MBg MFgMFg
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Example for Mech. Equilibrium Cont’d 
Determine the position of the child to balance the 
system for different position of axis of rotation.

Since the normal force is 

The net torque about the axis of 
rotation by all the forces are 

τ

Therefore x

n
The net torque can 
be rewritten 

τ

What do we learn?

No matter where the 
rotation axis is, net effect of 
the torque is identical.

F D
n

MBgMFg MFg

1m x

x/2

Rotational axis

2/xgM B ⋅= 0=
gMgMgM DFB ++=

( )2/00.1 xgM F +⋅+ 2/xn ⋅− 2/xgM D ⋅−

2/xgM B ⋅= ( )2/00.1 xgM F +⋅+

( ) 2/xgMgMgM DFB ⋅++− 2/xgM D ⋅−

xgMgM DF ⋅−⋅= 00.1 0=

m
gM
gM

D

F 00.1⋅= mm 29.200.1
350
800

=⋅=
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Example 9 – 9 
A 5.0 m long ladder leans against a wall at a point 4.0m above the ground.  The ladder is 
uniform and has mass 12.0kg.  Assuming the wall is frictionless (but ground is not), 
determine the forces exerted on the ladder by the ground and the wall.  

∑ xFFBD

First the translational equilibrium, 
using components

Thus, the y component of the force by the ground is

mg

FW

FGx

FGy

O

GyF

Gx WF F= − 0=

∑ yF Gymg F= − + 0=

mg= 12.0 9.8 118N N= × =

The length x0 is, from Pythagorian theorem
2 2

0 5.0 4.0 3.0x m= − =
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Example 9 – 9 cont’d
∑ OτFrom the rotational equilibrium 0 2 4.0Wmg x F= − + 0=

Thus the force exerted on the ladder by the wall is

WF

Thus the force exerted on the ladder by the ground is

Tx component of the force by the ground is
44Gx WF F N= =

GF

0 2
4.0

mg x
= 118 1.5 44

4.0
N⋅

= =

0x Gx WF F F= − =∑ Solve for FGx

2 2
Gx GyF F= + 2 244 118 130N= + ≈

The angle between the 
ladder and the wall is θ 1tan Gy

Gx

F
F

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
1 118tan 70

44
− ⎛ ⎞= =⎜ ⎟
⎝ ⎠
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Example for Mechanical Equilibrium
A person holds a 50.0N sphere in his hand.   The forearm is horizontal.  The biceps 
muscle is attached 3.00 cm from the joint, and the sphere is 35.0cm from the joint.  Find 
the upward force exerted by the biceps on the forearm and the downward force exerted 
by the upper arm on the forearm and acting at the joint.  Neglect the weight of forearm.

∑ xF

Since the system is in equilibrium, from 
the translational equilibrium condition

From the rotational equilibrium condition

O

FB

FU
mg

d

l

∑τ

Thus, the force exerted by 
the biceps muscle is

dFB ⋅

Force exerted by the upper arm is UF

0=
∑ yF mgFF UB −−= 0=

lmgdFF BU ⋅−⋅+⋅= 0 0=
lmg ⋅=

BF d
lmg ⋅

= N583
00.3

0.350.50
=

×
=

mgFB −= N5330.50583 =−=
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How do we solve equilibrium problems?
1. Identify all the forces and their directions and locations
2. Draw a free-body diagram with forces indicated on it
3. Write down vector force equation for each x and y 

component with proper signs
4. Select a rotational axis for torque calculations Selecting 

the axis such that the torque of one of the unknown forces 
become 0.

5. Write down torque equation with proper signs
6. Solve the equations for unknown quantities 
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Elastic Properties of Solids

strain
stressModulus Elastic ≡

We have been assuming that the objects do not change their 
shapes when external forces are exerting on it.   It this realistic?

No.  In reality, the objects get deformed as external forces act on it, 
though the internal forces resist the deformation as it takes place.

Deformation of solids can be understood in terms of Stress and Strain 
Stress: A quantity proportional to the force causing deformation.
Strain: Measure of degree of deformation

It is empirically known that for small stresses, strain is proportional to stress

The constants of proportionality are called Elastic Modulus

Three types of 
Elastic Modulus

1. Young’s modulus: Measure of the elasticity in length
2. Shear modulus: Measure of the elasticity in plane
3. Bulk modulus: Measure of the elasticity in volume
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Young’s Modulus

A
Fex≡Stress Tensile

Let’s consider a long bar with cross sectional area A and initial length Li. 

Fex=Fin

Young’s Modulus is defined as

What is the unit of Young’s Modulus?

Experimental 
Observations

1. For fixed external force, the change in length is 
proportional to the original length

2. The necessary force to produce a given strain is 
proportional to the cross sectional area

Li

A:cross sectional area

Tensile stress

Lf=Li+∆LFex After the stretch FexFin

Tensile strain
iL
L∆

≡Strain Tensile

Y
Force per unit area

Used to characterize a rod  
or wire stressed under 
tension or compression

Elastic limit: Maximum stress that can be applied to the substance 
before it becomes permanently deformed

Strain Tensile
Stress Tensile

≡
i

ex

L
L
A

F

∆
=
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Strain Volume
Stress VolumeB ≡

iV
V
A

F

∆

∆
−=

iV
V
P

∆
∆

−=

Bulk Modulus

A
F

=≡
applies force  theArea Surface

Force NormalPressure

Bulk Modulus characterizes the response of a substance to uniform 
squeezing or reduction of pressure.

Bulk Modulus is 
defined as

Volume stress 
=pressure

After the pressure change

If the pressure on an object changes by ∆P=∆F/A, the object will 
undergo a volume change ∆V.

V V’
F

F
F

F
Compressibility is the reciprocal of Bulk Modulus

Because the change of volume is 
reverse to change of pressure.
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Example for Solid’s Elastic Property
A solid brass sphere is initially under normal atmospheric pressure of 1.0x105N/m2.  The 
sphere is lowered into the ocean to a depth at which the pressures is 2.0x107N/m2.  The 
volume of the sphere in air is 0.5m3.  By how much its volume change once the sphere is 
submerged?

The pressure change ∆P is

Since bulk modulus is

iV
V
P

∆
∆

−=B

The amount of volume change is
B

iPVV ∆
−=∆

From table 12.1, bulk modulus of brass is 6.1x1010 N/m2

757 100.2100.1100.2 ×≈×−×=−=∆ if PPP

Therefore the resulting 
volume change ∆V is

34
10

7

106.1
106.1

5.0100.2 mVVV if
−×−=

×
××

−=−=∆

The volume has decreased.
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Density and Specific Gravity
Density, ρ (rho) , of an object is defined as mass per unit volume 

V
M

≡ρ
Unit? 
Dimension? 

3/mkg
][ 3−ML

Specific Gravity of a substance is defined as the ratio of the density 
of the substance to that of water at 4.0 oC (ρH2O=1.00g/cm3).

OH

SG
2

substance

ρ
ρ

≡ Unit? 
Dimension? 

None 
None 

What do you think would happen of a 
substance in the water dependent on SG?

1>SG
1<SG

Sink in the water
Float on the surface
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Fluid and Pressure
What are the three states of matter? Solid, Liquid, and Gas

Fluid cannot exert shearing or tensile stress.   Thus, the only force the fluid exerts 
on an object immersed in it is the forces perpendicular to the surfaces of the object.

A
FP ≡

How do you distinguish them? By the time it takes for a particular substance to 
change its shape in reaction to external forces.

What is a fluid? A collection of molecules that are randomly arranged and loosely
bound by forces between them or by the external container.

We will first learn about mechanics of fluid at rest, fluid statics. 

In what way do you think fluid exerts stress on the object submerged in it?

This force by the fluid on an object usually is expressed in the form of 
the force on a unit area at the given depth, the pressure, defined as

Note that pressure is a scalar quantity because it’s 
the magnitude of the force on a surface area A.

What is the unit and 
dimension of pressure?

Expression of pressure for an 
infinitesimal area dA by the force dF is

dFP
dA

=

Unit:N/m2

Dim.: [M][L-1][T-2]
Special SI unit for 
pressure is Pascal

2/11 mNPa ≡
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Example for Pressure
The mattress of a water bed is 2.00m long by 2.00m wide and 
30.0cm deep. a) Find the weight of the water in the mattress. 

The volume density of water at the normal condition (0oC and 1 atm) is 
1000kg/m3.  So the total mass of the water in the mattress is 

Since the surface area of the 
mattress is 4.00 m2, the 
pressure exerted on the floor is

m

P

Therefore the weight of the water in the mattress is 
W

b) Find the pressure exerted by the water on the floor when the bed 
rests in its normal position, assuming the entire lower surface of the 
mattress makes contact with the floor.

MWVρ= kg31020.1300.000.200.21000 ×=×××=

mg= N43 1018.18.91020.1 ×=××=

A
F

=
A
mg

= 3
4

1095.2
00.4

1018.1
×=

×
=
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Bulk Modulus characterizes the response of a substance to uniform 
squeezing or reduction of pressure.

Bulk Modulus is 
defined as

Volume stress 
=pressure

After the pressure change

If the pressure on an object changes by ∆P=∆F/A, the object will 
undergo a volume change ∆V.

V V’
F

F
F

F
Compressibility is the reciprocal of Bulk Modulus

Because the change of volume is 
reverse to change of pressure.


