PHYS 1444 – Section 501
Lecture #16

Monday, Mar. 27, 2006
Dr. Jaehoon Yu

• Sources of Magnetic Field
• Magnetic Field Due to Straight Wire
• Forces Between Two Parallel Wires
• Ampère’s Law and Its Verification
• Solenoid and Toroidal Magnetic Field
• Biot-Savart Law
Announcements

• Reading assignments
 – CH28 – 7, 28 – 8, and 28 – 10

• Term exam #2
 – Date and time: 5:30 – 6:50pm, Wednesday, Apr. 5
 – Coverage: Ch. 25 – 4 to what we finish this Wednesday, Mar. 29. (Ch. 28?)
Sources of Magnetic Field

• We have learned so far about the effects of magnetic field on electric currents and moving charge
• We will now learn about the dynamics of magnetism
 – How do we determine magnetic field strengths in certain situations?
 – How do two wires with electric current interact?
 – What is the general approach to finding the connection between current and magnetic field?
Magnetic Field due to a Straight Wire

- The magnetic field due to the current flowing through a straight wire forms a circular pattern around the wire
 - What do you imagine the strength of the field is as a function of the distance from the wire?
 - It must be weaker as the distance increases
 - How about as a function of current?
 - Directly proportional to the current
 - Indeed, the above are experimentally verified $B \propto \frac{I}{r}$
 - This is valid as long as $r <<$ the length of the wire
 - The proportionality constant is $\mu_0/2\pi$, thus the field strength becomes
 \[B = \frac{\mu_0 I}{2\pi r} \]
 - μ_0 is the permeability of free space $\mu_0 = 4\pi \times 10^{-7} \ T \cdot m/A$
Example 28 – 1

Calculation of B near wire. A vertical electric wire in the wall of a building carries a dc current of 25A upward. What is the magnetic field at a point 10cm due north of this wire?

Using the formula for the magnetic field near a straight wire

\[
B = \frac{\mu_0 I}{2\pi r}
\]

So we can obtain the magnetic field at 10cm away as

\[
B = \frac{\mu_0 I}{2\pi r} = \frac{(4\pi \times 10^{-7} \ T \cdot m/A) \cdot (25 A)}{(2\pi) \cdot (0.01m)} = 5.0 \times 10^{-5} \ T
\]
Force Between Two Parallel Wires

• We have learned that a wire carrying the current produces magnetic field
• Now what do you think will happen if we place two current carrying wires next to each other?
 – They will exert force onto each other. Repel or attract?
 – Depending on the direction of the currents
• This was first pointed out by Ampére.
• Let’s consider two long parallel conductors separated by a distance \(d \), carrying currents \(I_1 \) and \(I_2 \).
• At the location of the second conductor, the magnitude of the magnetic field produced by \(I_1 \) is
 \[
 B_1 = \frac{\mu_0 I_1}{2\pi d}
 \]
Force Between Two Parallel Wires

• The force F by a magnetic field B_1 on a wire of length l, carrying the current I_2 when the field and the current are perpendicular to each other is: $F = I_2 B_1 l$

 – So the force per unit length is $\frac{F}{l} = I_2 B_1 = I_2 \frac{\mu_0}{2\pi} \frac{I_1}{d}$

 – This force is only due to the magnetic field generated by the wire carrying the current I_1

• There is the force exerted on the wire carrying the current I_1 by the wire carrying current I_2 of the same magnitude but in opposite direction

• So the force per unit length is $\frac{F}{l} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d}$

• How about the direction of the force?

If the currents are in the same direction, the attractive force. If opposite, repulsive.
Example 28 – 2

Suspending a wire with current. A horizontal wire carries a current \(I_1 = 80 \text{A DC} \). A second parallel wire 20cm below it must carry how much current \(I_2 \) so that it doesn’t fall due to the gravity? The lower has a mass of 0.12g per meter of length.

Which direction is the gravitational force? Downward

This force must be balanced by the magnetic force exerted on the wire by the first wire.

\[
\frac{F_g}{l} = \frac{mg}{l} = \frac{F_M}{l} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d}
\]

Solving for \(I_2 \)

\[
I_2 = \frac{mg \ 2\pi d}{l \ \mu_0 I_1} = \frac{2\pi \left(9.8 \text{ m/s}^2 \right) \cdot \left(0.12 \times 10^{-3} \text{ kg} \right) \cdot (0.20 \text{m})}{\left(4\pi \times 10^{-7} \text{ T} \cdot \text{ m/A} \right) \cdot (80 \text{A})} = 15 \text{ A}
\]
Operational Definition of Ampere and Coulomb

• The permeability of free space is defined to be exactly
 \[\mu_0 = 4\pi \times 10^{-7} \ T \cdot m/A \]

• The unit of current, ampere, is defined using the definition of the force between two wires each carrying 1A of current and separated by 1m
 \[
 \frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi d} = \frac{4\pi \times 10^{-7} T \cdot m/A}{2\pi} \frac{1A \cdot 1A}{1m} = 2 \times 10^{-7} \ N/m
 \]
 – So 1A is defined as: the current flowing each of two long parallel conductors 1m apart, which results in a force of exactly \(2 \times 10^{-7}\) N/m.

• Coulomb is then defined as exactly 1C=1A.s.

• We do it this way since current is measured more accurately and controlled more easily than charge.
Ampére’s Law

• What is the relationship between magnetic field strength and the current?
 – Does this work in all cases?
 • Nope!
 • OK, then when?
 • Only valid for a long straight wire

• Then what would be the more generalized relationship between the current and the magnetic field for any shape of the wire?
 – French scientist André Marie Ampére proposed such a relationship soon after Oersted’s discovery

\[B = \frac{\mu_0 I}{2\pi r} \]
Ampère’s Law

• Let’s consider an arbitrary closed path around the current as shown in the figure.
 – Let’s split this path with small segments each of Δl long.
 – The sum of all the products of the length of each segment and the component of B parallel to that segment is equal to μ_0 times the net current I_{encl} that passes through the surface enclosed by the path

$$\sum B_\parallel \Delta l = \mu_0 I_{\text{encl}}$$

– In the limit $\Delta l \to 0$, this relation becomes

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{encl}}$$

Looks very similar to a law in the electricity. Which law is it?

Gauss’ Law
Verification of Ampére’s Law

• Let’s find the magnitude of B at a distance r away from a long straight wire with current I

 – This is a verification of Ampere’s Law

 – We can apply Ampere’s law to a circular path of radius r.

\[
\mu_0 I_{encl} = \oint \vec{B} \cdot d\vec{l} = \oint Bdl = B\oint dl = 2\pi r B
\]

Solving for B

\[
B = \frac{\mu_0 I_{encl}}{2\pi r} = \frac{\mu_0 I}{2\pi r}
\]

– We just verified that Ampere’s law works in a simple case

– Experiments verified that it works for other cases too

– The importance, however, is that it provides means to relate magnetic field to current
Verification of Ampère’s Law

• Since Ampere’s law is valid in general, B in Ampere’s law is not just due to the current I_{encl}.

• B is the field at each point in space along the chosen path due to all sources
 – Including the current I enclosed by the path but also due to any other sources
 – How do you obtain B in the figure at any point?
 • Vector sum of the field by the two currents
 – The result of the closed path integral in Ampere’s law for green dashed path is still $\mu_0 I_1$. Why?
 – While B in each point along the path varies, the integral over the closed path still comes out the same whether there is the second wire or not.
Example 28 – 4

Field inside and outside a wire. A long straight cylindrical wire conductor of radius \(R \) carries current \(I \) of uniform density in the conductor. Determine the magnetic field at (a) points outside the conductor (\(r > R \)) and (b) points inside the conductor (\(r < R \)). Assume that \(r \), the radial distance from the axis, is much less than the length of the wire. (c) If \(R = 2.0 \text{mm} \) and \(I = 60 \text{A} \), what is \(B \) at \(r = 1.0 \text{mm} \), \(r = 2.0 \text{mm} \) and \(r = 3.0 \text{mm} \)? Since the wire is long, straight and symmetric, the field should be the same at any point the same distance from the center of the wire.

Since \(B \) must be tangent to circles around the wire, let’s choose a circular path of closed-path integral outside the wire (\(r > R \)). What is \(I_{\text{encl}} \)?

So using Ampere’s law

\[
\mu_0 I = \oint B \cdot d\vec{l} = 2\pi r B
\]

Solving for \(B \)

\[
B = \frac{\mu_0 I}{2\pi r}
\]
Example 28 – 4

For $r<R$, the current inside the closed path is less than I. How much is it?

$$I_{\text{encl}} = I \frac{\pi r^2}{\pi R^2} = I \left(\frac{r}{R}\right)^2$$

So using Ampere’s law

$$\mu_0 I \left(\frac{r}{R}\right)^2 = \oint \mathbf{B} \cdot d\mathbf{l} = 2\pi rB$$

Solving for B

$$B = \frac{\mu_0}{2\pi} \frac{I}{r} \left(\frac{r}{R}\right)^2 = \frac{\mu_0}{2\pi} \frac{Ir}{R^2}$$

What does this mean?

The field is 0 at $r=0$ and increases linearly as a function of the distance from the center of the wire up to $r=R$ then decreases as $1/r$ beyond the radius of the conductor.
Example 28 – 5

Coaxial cable. A coaxial cable is a single wire surrounded by a cylindrical metallic braid, as shown in the figure. The two conductors are separated by an insulator. The central wire carries current to the other end of the cable, and the outer braid carries the return current and is usually considered ground. Describe the magnetic field (a) in the space between the conductors and (b) outside the cable.

(a) The magnetic field between the conductors is the same as the long, straight wire case since the current in the outer conductor does not impact the enclosed current.

\[B = \frac{\mu_0 I}{2\pi r} \]

(b) Outside the cable, we can draw a similar circular path, since we expect the field to have a circular symmetry. What is the sum of the total current inside the closed path? \(I_{\text{encl}} = I - I = 0. \)

So there is no magnetic field outside a coaxial cable. In other words, the coaxial cable self-shields. The outer conductor also shields against an external electric field. Cleaner signal and less noise.