OUHEP CLUSTER

• Shared by ATLAS and D-Zero
• Hardware (4.8GFlops, 7.5GB, 1TB)
 – OUHEP0, 2x Athlon 1GHz, 2 GB, 100GB + 800GB RAID
 – OUHEP1, 2x P3, 1GHz, 1GB, 150GB
 – OUHEP2, 2x P3, 500 MHz, 1GB, 13GB
 – OUHEP3, 2x P3, 500 MHz, 1GB, 13GB
 – OUHEP4, 2x P3, 1GHz, 1GB, 40GB
 – OUHEP5, 2x P3, 1GHz, 1GB, 30GB
 – OUHEP9, 1x, P4, 2.2GHz, 512MB, 15GB
 – OUHEP[6,7,8], 1x P2, 233MHz, 64MB, 0GB

SAR @UTA Workshop 2003, Joel Snow, Langston University
OUHEP CLUSTER

• Network
 – University: Gigabit to Internet2
 – Cluster: 100 Mbs Ethernet and Gigabit interconnect on private switch (NFS)
 – Gigabit to OSCER
 – OSCER: 250 CPU (P4/1.5GHz) Linux Cluster
OUHEP CLUSTER

• Software
 – RH Linux 7.2 (2.4.18 Kernel)
 – D0 software infrastructure
 • Full D0 software releases
 • Code development
 – Remote Data Access - SAM Station
 – MCFarm
 – Globus 2
 – Condor & Condor-g
OUHEP CLUSTER

• MCFarm
 – 7 nodes/13 CPUs (12 worker CPUs)
 – Using p13.08.00 release
 – Remote job submission from UTA
 – Condor as batch system
 – NFS Automounter for disk availability
 • Better Security - no root daemon
 • Easier administration - system does the work efficiently
 • Simpler system, less code to run
OUHEP CLUSTER

– Scratch directory structure eases administration, reduces root dependence
 • export FARM_NODEDIR=/scratch/users/mcfarm/scr
 • export FARM_CACHE=/scratch/users/mcfarm/cache
 • export FARM_GATHER=/scratch/users/mcfarm/gather
 • export FARM_ARCHIVE=/scratch/users/mcfarm/archive

– These are soft links to local scratch storage, which are automounted when needed: e.g.
 • scr001 -> /home3/ouhep1/scr001
 • archive001_A -> scr001/archive
 • cache001_A -> scr001/cache_A
 • gather001 -> scr001/gath_queue
OUHEP CLUSTERS

– Portability/Migration Issues
 • For use on non-dedicated clusters especially those without
 root access like the 250 CPU OSCER cluster mcfarm
 must be as innocuous as possible.
 • Remaining root dependence must go:
 – export FARM_WORK=/fscratch (redundant with automounter)
 • Eliminate mcfarm daemons by utilizing the full
 capabilities of the batch system (Condor, PBS)
 – No user daemons allowed on head or worker nodes of OSCER
 • A less restrictive mcfarm implementation for non-
 dedicated clusters will significantly increase available
 resources.