Why ROOT?

A detector cross-section, showing particle paths

- Beam Pipe (center)
- Tracking Chamber
- Magnet Coil
- E-M Calorimeter
- Hadron Calorimeter
- Magnetized Iron
- Muon Chambers
ROOT

- ROOT:
- is an object-oriented framework aimed at solving the data analysis challenges of high energy physics
- Object-oriented: by encapsulation, class hierarchies complexity is reduced
- Framework: contain the basic utilities and services
- Such I/O and 2D,3D graphics, Histograms …
WAYS TO USE ROOT

Three ways to use root:

- GUI: graphic use interface (windows, buttons, menus..)

- Macros & Programs

- Command line interpreter (CINT) C++ command
HISTOGRAMS

Root support the following histograms:

.1-D histograms
.2-D histograms
.3-D histograms
.profile histograms
Creating Histograms

- Histograms are created with constructor:

```c++
TH1F  * h1 = new TH1F("h1","h1 title" , 100, 0, 4) ;
TH2F  * h2 =  new TH2F("h2","h2 title", 40, 0, 4, 30, -3, 3);
```

- for 1-D histogram : the name of the histogram, the title, the number of bins, the X min, and the X max

- for 2-D histogram: the bins along the X axis…. the bins along the Y axis….
Filling Histograms

A histogram is filled typically with statement like this:

- h1 -> Fill(x);
- h2 -> Fill(x,y);

The Fill method computes the bin number corresponding to the given x, y, z.
The options

1-the SCATter plot option
2-the ARRow option
3-the BOX option
4-the COLor option
5- the LEGO option

......

.....

...
Graphs

A graph is a graphics object made of two array X and Y holding the x and y coordinates of n points. Graphs are created with a constructor:

Graph Draw options:
1- “L” a simple poly-line
2- “*” a star is plotted at each point
3- “B” a bar chart is drawn at each point.

……..
Graphics and the Graphical user interface

- Graphical capabilities of root range from 2-D objects (lines, arrows, ...) to various plots, histograms and 3-D graphical objects.
- BY PROGRAMING: all the objects are supposed to be drawn.
- When an object is drawn one can interact with it:
 (moving, resizing, modifying ...)

Examples feynman Diagrams:
Input/ Output

• It explain how the saving and reading of objects to and from Root files.
• A Root file is a UNIX file directory
 It can contain directories and object organized in unlimited number of levels
In the manual you can find:
 The compression, file recovery, the logical file
 The class T file and it’s methods.
 How to navigate in the file,
 How to save objects and read them back.
TREES

why Trees?
1-storing large number of entries
 The T tree class is designed for storing large number of events it minimize the space.
2-Hierarchy of branches and leaves which allows a flexible organization of data.
 _a tree may have one or many branches and a branch may have one or many leaves
 _the branches are independent and may be written to different files
3-reading selective branches: each branch can be read independently of any other branch.
Final word about Root

- It’s a powerful tool to analyze the current standard data in HEP.

And let’s do our best to learn it.