PHYS 1441 – Section 001
Lecture #1

Monday, June 6, 2016
Dr. Jaehoon Yu

• Who am I?
• How is this class organized?
• What is Physics?
• What do we want from this class?
• Brief history of physics
• Standards and units

Today’s homework is homework #1, due 11pm, this Wednesday, June 8!!
Announcements

• Plea to you: Please turn off all your electronic gadgets, including cell-phones, computers
• Reading assignment #1: Read and follow through all sections in appendix A by tomorrow, June 7
 – A-1 through A-7
• There will be a quiz on this and Ch. 21 on Wednesday, June 8.
Who am I?

- **Name:** Dr. Jaehoon Yu (You can call me **Dr. Yu**)
- **Office:** Rm 342, Chemistry and Physics Building
- **Extension:** x22814, E-mail: **jaehoonyu@uta.edu**
- **My profession:** High Energy Particle Physics (HEP)
 - Collide particles (protons on anti-protons or electrons on anti-electrons, positrons) at the energies equivalent to 10,000 Trillion degrees
 - To understand
 - Fundamental constituents of matter
 - Forces between the constituents (gravitational, electro-magnetic, weak and strong forces)
 - Origin of Mass
 - Search for Dark Matter and Making of Dark Matter Beams
 - Creation of Universe (**Big Bang** Theory)
 - A pure scientific research activity
 - Direct use of the fundamental laws we find may take longer than we want but
 - Indirect product of research contribute to every day lives; eg. WWW
 - Why do we do with this?
 - Make our everyday lives better to help us live well as an integral part of the universe
We always wonder…

• What makes up the universe?
• How does the universe work?
• What holds the universe together?
• How can we live in the universe well?
• Where do we all come from?
High Energy Physics

• Definition: A field of physics that pursues understanding the fundamental constituents of matter and basic principles of interactions between them.

• Known interactions (forces):
 – Gravitational Force
 – Electromagnetic Force
 – Weak Nuclear Force
 – Strong Nuclear Force

• Current theory: The Standard Model of Particle Physics
The forces in Nature

<table>
<thead>
<tr>
<th>TYPE</th>
<th>INTENSITY OF FORCES (DECREASING ORDER)</th>
<th>BINDING PARTICLE (FIELD QUANTUM)</th>
<th>OCCURS IN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG NUCLEAR FORCE</td>
<td>~ 1</td>
<td>GLUONS (NO MASS)</td>
<td>ATOMIC NUCLEUS</td>
</tr>
<tr>
<td>ELECTRO-MAGNETIC FORCE</td>
<td>$\sim 10^{-3}$</td>
<td>PHOTONS (NO MASS)</td>
<td>ATOMIC SHELL ELECTROTECHNIQUE</td>
</tr>
<tr>
<td>WEAK NUCLEAR FORCE</td>
<td>$\sim 10^{-5}$</td>
<td>BOSONS Z^0, W^+, W^- (HEAVY)</td>
<td>RADIOACTIVE BETA DESINTEGRATION</td>
</tr>
<tr>
<td>GRAVITATION</td>
<td>$\sim 10^{-38}$</td>
<td>GRAVITONS (?)</td>
<td>HEAVENLY BODIES</td>
</tr>
</tbody>
</table>

THE EXCHANGE OF PARTICLES IS RESPONSIBLE FOR THE FORCE.
Discovered in 1995, ~175m_p

Total of 16 particles (12+4 force mediators) make up all the visible matter in the universe! ➔ Simple and elegant!!!

Tested to a precision of 1 part per million!
So what’s the problem?

- Why is the mass range so large (0.1 m_p – 175 m_p)?
- Is the new particle we’ve discovered really the Higgs particle?
- Why is the matter in the universe made only of particles?
- Neutrinos have mass!! What are the mixing parameters, particle-anti particle asymmetry and mass ordering?
- Why are there only four apparent forces?
 - Were they all unified at the Big Bang?
How does a nuclear power plant work?

My 1000 year dream: Skip the whole thing!

Make electricity directly from nuclear force!
So what’s the problem?

• Why is the mass range so large (0.1\(m_p\) – 175 \(m_p\))?
• Is the particle we discovered really the Higgs particle?
• Why is the matter in the universe made only of particles?
• Neutrinos have mass!! What are the mixing parameters, particle-anti particle asymmetry and mass ordering?
• Why are there only four apparent forces?
 – Were they all unified at the Big Bang?
• Is the picture we present the real thing?
What makes up the universe?

~95% unknown!!
So what’s the problem?

• Why is the mass range so large (0.1m$_p$ – 175 m$_p$)?
• Is the particle we discovered really the Higgs particle?
• Why is the matter in the universe made only of particles?
• Neutrinos have mass!! What are the mixing parameters, particle-anti particle asymmetry and mass ordering?
• Why are there only four apparent forces?
 – Were they all unified at the Big Bang?
• Is the picture we present the real thing?
 – What makes up the remaining ~95% of the universe?
• Are there any other particles we don’t know of?
 – Big deal for the new LHC Run!
• Where do we all come from?
• How can we live well in the universe as an integral partner?
Accelerators are **Powerful Microscopes**.

They make high energy particle beams that allow us to see small things.

seen by
low energy beam
(poorer resolution)

seen by
high energy beam
(better resolution)
Accelerators are also **Time Machines**.

They make particles last seen in the earliest moments of the universe.

Particle and anti-particle annihilate.

\[E = mc^2 \]
Fermilab Tevatron and LHC at CERN

- World’s Highest Energy proton-anti-proton collider
 - 4km (2.5mi) circumference
 - $E_{cm} = 1.96 \text{ TeV} (=6.3 \times 10^{-7} \text{ J/p} \Rightarrow 13 \text{M Joules on the area smaller than } 10^{-4} \text{m}^2)$
 - Equivalent to the kinetic energy of a 20t truck at the speed 130km/hr
 - ~100,000 times the energy density at the ground 0 of the Hiroshima atom bomb
 - Tevatron was shut down in 2011
 - Vibrant other programs running, including the search for dark matter with beams!!

- World’s Highest Energy p-p collider
 - 27km (17mi) circumference, 100m (300ft) underground
 - Design $E_{cm} = 14 \text{ TeV} (=44 \times 10^{-7} \text{ J/p} \Rightarrow 362 \text{M Joules on the area smaller than } 10^{-4} \text{m}^2)$
 - Equivalent to the kinetic energy of a B727 (80tons) at the speed 310km/hr
 - ~3M times the energy density at the ground 0 of the Hiroshima atom bomb

Large amount of data accumulated in 2010 – 2013
Beam returned 2015 after a 2 yr shutdown
2017 data taking ongoing

Monday, June 6, 2016
Phys 1444-001, Summer 2016
Dr. Jaehoon Yu
What is the Higgs and What does it do?

• When there is perfect symmetry, one cannot tell directions!
What? What’s the symmetry?

• Where is the head of the table?
• Without a broken symmetry, one cannot tell directional information!!
A broken symmetry
What is the Higgs and What does it do?

• When there is perfect symmetry, one cannot tell directions!
• Only when symmetry is broken, can one tell directions
• Higgs field works to break the perfect symmetry and gives mass to all fundamental particles
• Sometimes, this field spontaneously generates a particle, the Higgs particle
• So the Higgs particle is the evidence of the existence of the Higgs field!
So how does Higgs Field work again?

- Person in space → no symmetry breaking
- Person in air → symmetry can be broken
- Sometimes, you get

Just like the tornado is a piece of evidence of the existence of air, Higgs particle is a piece of evidence of Higgs mechanism.

Monday, June 6, 2016

PHYS 1444-001, Summer 2016
Dr. Jaehoon Yu
How do we look for the Higgs?

1. Identify Higgs candidate events

2. Understand fakes (backgrounds)

3. Look for a bump!!
 1. Large amount of data absolutely critical
What did statistics do for Higgs?

\[\sqrt{s} = 7 \text{ TeV} \int \text{Ldt} = 0.02 \text{ fb}^{-1} \quad \text{Apr 18, 2011} \]

ATLAS Preliminary

H\(\rightarrow\gamma\gamma\) channel

Monday, June 6, 2016

PHYS 1444-001, Summer 2016
Dr. Jaehoon Yu
How about this?

\(\sqrt{s} = 7 \text{ TeV} \int Ldt = 0.05 \text{ fb}^{-1} \)

ATLAS Preliminary

\(H \to ZZ^{(*)} \to 4l \) channel

- Signal \((m_H = 125 \text{ GeV})\)
- Background \(ZZ^{(*)}\)
- Background \(Z+\text{jets, } t\bar{t}\)
- Data

Monday, June 6, 2016

PHYS 1444-001, Summer 2016
Dr. Jaehoon Yu
So have we seen the Higgs particle?

- The statistical significance of the finding is way over 7 standard deviations
<table>
<thead>
<tr>
<th>$z\sigma$</th>
<th>Percentage within CI</th>
<th>Percentage outside CI</th>
<th>Fraction outside CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.674 490σ</td>
<td>50%</td>
<td>50%</td>
<td>1 / 2</td>
</tr>
<tr>
<td>0.994 458σ</td>
<td>68%</td>
<td>32%</td>
<td>1 / 3.125</td>
</tr>
<tr>
<td>1σ</td>
<td>68.268 9492%</td>
<td>31.731 0508%</td>
<td>1 / 3.151 4872</td>
</tr>
<tr>
<td>1.281 552σ</td>
<td>80%</td>
<td>20%</td>
<td>1 / 5</td>
</tr>
<tr>
<td>1.644 854σ</td>
<td>90%</td>
<td>10%</td>
<td>1 / 10</td>
</tr>
<tr>
<td>1.959 964σ</td>
<td>95%</td>
<td>5%</td>
<td>1 / 20</td>
</tr>
<tr>
<td>2σ</td>
<td>95.449 9736%</td>
<td>4.550 0264%</td>
<td>1 / 21.977 895</td>
</tr>
<tr>
<td>2.575 829σ</td>
<td>99%</td>
<td>1%</td>
<td>1 / 100</td>
</tr>
<tr>
<td>3σ</td>
<td>99.730 0204%</td>
<td>0.269 9796%</td>
<td>1 / 370.398</td>
</tr>
<tr>
<td>3.290 527σ</td>
<td>99.9%</td>
<td>0.1%</td>
<td>1 / 1,000</td>
</tr>
<tr>
<td>3.890 592σ</td>
<td>99.99%</td>
<td>0.01%</td>
<td>1 / 10,000</td>
</tr>
<tr>
<td>4σ</td>
<td>99.993 666%</td>
<td>0.006 334%</td>
<td>1 / 15,787</td>
</tr>
<tr>
<td>4.417 173σ</td>
<td>99.999%</td>
<td>0.001%</td>
<td>1 / 100,000</td>
</tr>
<tr>
<td>4.891 638σ</td>
<td>99.9999%</td>
<td>0.0001%</td>
<td>1 / 1,000,000</td>
</tr>
<tr>
<td>5σ</td>
<td>99.999 942 6697%</td>
<td>0.000 057 3303%</td>
<td>1 / 1,744,278</td>
</tr>
<tr>
<td>5.326 724σ</td>
<td>99.999 99%</td>
<td>0.000 1%</td>
<td>1 / 10,000,000</td>
</tr>
<tr>
<td>5.730 729σ</td>
<td>99.999 999%</td>
<td>0.000 01%</td>
<td>1 / 100,000,000</td>
</tr>
<tr>
<td>6σ</td>
<td>99.999 999 8027%</td>
<td>0.000 000 1973%</td>
<td>1 / 506,797,346</td>
</tr>
<tr>
<td>6.109 410σ</td>
<td>99.999 9999%</td>
<td>0.000 0001%</td>
<td>1 / 1,000,000,000</td>
</tr>
<tr>
<td>6.466 951σ</td>
<td>99.999 999 99%</td>
<td>0.000 000 01%</td>
<td>1 / 10,000,000,000</td>
</tr>
<tr>
<td>6.806 502σ</td>
<td>99.999 999 999%</td>
<td>0.000 000 001%</td>
<td>1 / 100,000,000,000</td>
</tr>
<tr>
<td>7σ</td>
<td>99.999 999 999 7440%</td>
<td>0.000 000 000 256%</td>
<td>1 / 390,682,215,445</td>
</tr>
</tbody>
</table>
So have we seen the Higgs particle?

• The statistical significance of the finding is much bigger than seven standard deviations
 – Level of significance: much better than 99.999 999 999 7% (eleven 9s!!)
 – We could be wrong once if we do the same experiment 391,000,000,000 times (will take ~13,000 years even if each experiment takes 1s!!)

• So did we find the Higgs particle?
 – We have discovered the heaviest new boson we’ve seen thus far
 – It has many properties consistent with the Standard Model Higgs particle
 • It quacks like a duck and walks like a duck but…
 – We do not have enough data to precisely measure all the properties – mass, lifetime, the rate at which this particle decays to certain other particles, etc – to definitively determine its nature

• Precision measurements and searches in new channels ongoing
A hint of something new?

\[\sim 760 \text{GeV} \]

\[\sim 4.6\sigma \text{ Excess!!} \]

ATLAS Preliminary

- Data
- Background-only fit

\(\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1} \) (2015 data)

Spin-2 Selection

Monday, June 6, 2016

PHYS 1444-001, Summer 2016

Dr. Jaehoon Yu
<table>
<thead>
<tr>
<th>σ</th>
<th>Percentage within CI</th>
<th>Percentage outside CI</th>
<th>Fraction outside CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.674 490σ</td>
<td>50%</td>
<td>50%</td>
<td>1 / 2</td>
</tr>
<tr>
<td>0.994 458σ</td>
<td>68%</td>
<td>32%</td>
<td>1 / 3.125</td>
</tr>
<tr>
<td>1σ</td>
<td>68.268 9492%</td>
<td>31.731 0508%</td>
<td>1 / 3.151 4872</td>
</tr>
<tr>
<td>1.281 552σ</td>
<td>80%</td>
<td>20%</td>
<td>1 / 5</td>
</tr>
<tr>
<td>1.644 854σ</td>
<td>90%</td>
<td>10%</td>
<td>1 / 10</td>
</tr>
<tr>
<td>1.959 964σ</td>
<td>95%</td>
<td>5%</td>
<td>1 / 20</td>
</tr>
<tr>
<td>2σ</td>
<td>95.449 9736%</td>
<td>4.550 0264%</td>
<td>1 / 21.977 895</td>
</tr>
<tr>
<td>2.575 829σ</td>
<td>99%</td>
<td>1%</td>
<td>1 / 100</td>
</tr>
<tr>
<td>3σ</td>
<td>99.730 0204%</td>
<td>0.269 9796%</td>
<td>1 / 370.398</td>
</tr>
<tr>
<td>3.290 527σ</td>
<td>99.9%</td>
<td>0.1%</td>
<td>1 / 1,000</td>
</tr>
<tr>
<td>3.890 592σ</td>
<td>99.99%</td>
<td>0.01%</td>
<td>1 / 10,000</td>
</tr>
<tr>
<td>4σ</td>
<td>99.993 666%</td>
<td>0.006 334%</td>
<td>1 / 15,787</td>
</tr>
<tr>
<td>4.417 173σ</td>
<td>99.999%</td>
<td>0.001%</td>
<td>1 / 100,000</td>
</tr>
<tr>
<td>4.891 638σ</td>
<td>99.9999%</td>
<td>0.0001%</td>
<td>1 / 1,000,000</td>
</tr>
<tr>
<td>5σ</td>
<td>99.999 942 6697%</td>
<td>0.000 057 3393%</td>
<td>1 / 4,744 075</td>
</tr>
<tr>
<td>5.326 724σ</td>
<td>99.999 99%</td>
<td>0.001%</td>
<td>1 / 100,000</td>
</tr>
<tr>
<td>5.730 729σ</td>
<td>99.999 999%</td>
<td>0.0001%</td>
<td>1 / 10,000,000</td>
</tr>
<tr>
<td>6σ</td>
<td>99.999 999 8027%</td>
<td>0.000 000 1973%</td>
<td>1 / 506,797,346</td>
</tr>
<tr>
<td>6.109 410σ</td>
<td>99.999 9999%</td>
<td>0.000 0001%</td>
<td>1 / 1,000,000,000</td>
</tr>
<tr>
<td>6.466 951σ</td>
<td>99.999 9999 99%</td>
<td>0.000 0000 01%</td>
<td>1 / 10,000,000,000</td>
</tr>
<tr>
<td>6.806 402σ</td>
<td>99.999 9999 999%</td>
<td>0.000 0000 0001%</td>
<td>1 / 100,000,000,000</td>
</tr>
<tr>
<td>7σ</td>
<td>99.999 999 999 7440%</td>
<td>0.000 000 000 256%</td>
<td>1 / 390,682,215,445</td>
</tr>
</tbody>
</table>

Not good enough yet!!
The Next Big Thing - DUNE Experiment

- Stands for Deep Under Ground Neutrino Experiment
- The flagship long baseline (1300km) ν experiment
 - 1500m underground in South Dakota

Yes, you are right!
Mount Rushmore!!

- Nobel Winning Neutrino Discovery by Ray Davis in 1960’s
- Many Dark Matter experiments in progress
- New DUNE area to be excavated shortly

Monday, June 6, 2016

PHYS 1444 001 Summer 2016
Dr. Jaehoon Yu
Dark Matter Searches at Fermilab

• Fermi National Accelerator Laboratory is turning into a lab with very high intensity accelerator program
• UTA group is part of three experiments
 – Long Baseline Neutrino Experiment (LBNE), an $850M flagship experiment, with data expected in 2025
 • High flux secondary beam and a near detector enables searches for DM
 • In addition to precision measurements of key neutrino parameters...
 • UTA playing very significant role in this experiment
• A rich physics program for the next 20 – 30 years!!
• If we see DM, we could use this to make DM Beam??
The Components of the DUNE Experiment

1500m underground

4 caverns with ~20kt total each

14m

15m

62m

Monday, June 6, 2016
How BIG?

This is just for a 3mx1mx1m (42t) active volume baby prototype!!
GEM Application Potential

Using the lower GEM signal, the readout can be self-triggered with energy discrimination:

FAST X-RAY IMAGING

9 keV absorption radiography of a small mammal (image size ~ 60 x 30 mm²)
Bi-product of High Energy Physics Research

Can you see what the object is?
(GEM Detector X-ray Image)
And in not too distant future, we could do ...
Discovery of the God Particle in 2012
Information & Communication Source

- **Course web page:**
 http://www-hep.uta.edu/~yu/teaching/summer16-1444-001/summer16-1444-001.html
 - Contact information & Class Schedule
 - Syllabus
 - Homework
 - Holidays and Exam days
 - Evaluation Policy
 - Class Style & Communication
 - Other information

- **Primary communication tool is e-mail:** Make sure that your e-mail at the time of course registration is the one you most frequently read!!

- **Office Hours for Dr. Yu:** 12:30 – 1:30pm, M-Th or by appointments
Evaluation Policy

- Homework: 25%
- Exams
 - Final Comprehensive Exams (7/11/16): 23%
 - Mid-term Comprehensive Exam (6/22/16): 20%
 - One better of the two term Exams (6/13/16 and 6/29/16): 12%
 - Total of two non-comprehensive term exams (6/13 and 6/29)
 - One better of the two exams will be used for the final grade
 - Missing an exam is not permissible unless pre-approved
 - No makeup test
 - You will get an F if you miss any of the exams without a prior approval no matter how well you’ve been doing in class!
- Lab score: 10%
- Pop-quizzes: 10%
- Extra credits: 10% of the total
 - Random attendances
 - Strong participation in the class discussions
 - Special projects (BIGGGGGG!!!)
 - Planetarium shows and Other many opportunities
- Grading will be done on a sliding scale

Dr. Jaehoon Yu
Homework

- Solving homework problems is the only way to comprehend class material ➔ 2 homeworks per week
- An electronic homework system has been set up for you
 - Details are in the material distributed today and on the web
 - https://quest.cns.utexas.edu/student/courses/list
 - Choose the course PHYS1444-Summer16, unique number 44016
 - Download homeworks, solve the problems and submit them online
 - Multiple unsuccessful tries will deduct points
 - Roster will close at 11pm Wednesday, June 8
 - You need a UT e-ID: Go and apply at the URL https://idmanager.its.utexas.edu/eid_self_help/?createEID&qwicap-page-id=EA027EFF7E2DA39E if you don’t have one.

- Each homework carries the same weight
- Homework problems will be slightly ahead of the class
- **No** homework will be dropped from the final grade!!
- Homework will constitute **25% of the total** ➔ A good way of keeping your grades high
- Strongly encouraged to collaborate ➔ Does not mean you can copy
Attendances and Class Style

- **Attendances:**
 - Will be taken randomly
 - Will be used for extra credits

- **Class style:**
 - Lectures will be on electronic media
 - The lecture notes will be posted on the web **AFTER** each class
 - Will be mixed with traditional methods
 - Active participation through questions and discussions are **STRONGLY** encouraged ➔ Extra credit,…
 - Communication between you and me is extremely important
 - If you have problems, please do not hesitate talking to me
Lab and Physics Clinic

- **Physics Labs**: Starts today, Monday, June 6
 - Important to understand physical principles through experiments
 - 10% of the grade
 - Prelab questions can be obtained at www.uta.edu/physics/labs
 - Lab syllabus is available in your assigned lab rooms.

- **Physics Clinic**:
 - Free service
 - They provide general help on physics, including help solving homework problems
 - Do not expect solutions of the problem from them!
 - Do not expect them to tell you whether your answers are correct!
 - It is your responsibility to make sure that you have done everything correctly!
 - 11am – 6pm, Mon – Thu in SH 007
 - This service begins today!
 - Please take full advantage of this service!!
Extra credit

• 10% addition to the total
 – Could boost a B to A, C to B or D to C

• What constitute for extra credit?
 – Special projects (biggest!!)
 – Random attendances
 – Strong participation in the class discussions
 – Watch the valid planetarium shows
 – Many other opportunities
Valid Planetarium Shows

• Regular running shows
 – Texas Stargazing – Tuesdays at 2:00 pm; Dynamic Earth – Wed. at 2:00 pm;
 – We are astronomers– Fridays at 2:00pm and Saturdays at 5:30 pm

• Shows that need special arrangements
 – Black Holes (can watch up to 2 times)
 – Astronaut; Bad Astronomy; Back to the Moon for Good; From Earth to the Universe; Experience the Aurora; IBEX; Ice Worlds; Magnificent Sun
 – Mayan Prophecies; MicroCosm; Nano Cam; Stars of the Pharaohs; TimeSpace, Two Small Pieces of Glass; Unseen Universe; Violent Universe

• How to submit for extra credit?
 – Obtain the ticket stub that is signed and dated by the planetarium star lecturer of the day
 – Collect the ticket stubs
 – Tape one edge of all of the ticket stubs on a sheet of paper with your name and ID written on it
 – Submit the sheet at the end of the semester at the final exam
What can you expect from this class?

• All A’s?
 – This would be really nice, wouldn’t it?
 – But if it is too easy it is not fulfilling or meaningful….

• This class is not going to be a stroll in the park!!

• You will earn your grade in this class.
 – You will need to put in sufficient time and sincere efforts
 – Exams and quizzes will be tough!!
 • Sometimes problems might not look exactly like what you learned in the class
 • Just putting the right answer for free response problems does not work!

• But you have a great control (up to 45%) of your grade in your hands
 – Homework is 25% of the total grade!!
 • Means you will have many homework problems
 – Sometimes much more than any other classes
 – Some homework problems will be something that you have yet to learn in class
 – Exam problems will be easier than homework problems but the same principles!!
 – Lab 10%
 – Extra credit 10%

• I will work with you so that your efforts are properly rewarded
What do we want to learn in this class?

- Physics is everywhere around you.
- Skills to understand the fundamental principles that surrounds you in everyday lives…
- Skills to identify what laws of physics applies to what phenomena and use them appropriately.
- Understand the impact of physical laws and apply them.
- Learn skills to think, research and analyze observations.
- Learn skills to express observations and measurements in mathematical language.
- Learn skills to express your research in systematic manner in writing.
- But most importantly the confidence in your physics ability and to take on any challenges laid in front of you!!

Most importantly, let us have a lot of FUN!!
Specifically, in this course, you will learn…

- Concept of Electricity and Magnetism
- Electric charge and magnetic poles
- Electric and Magnetic Forces
- Electric and magnetic potential and energies
- Propagation of electric and magnetic fields
- Relationship between electro-magnetic forces and light
- Behaviors of light and optics
- Special relativity and quantum theories
How to study for this course?

• Keep up with the class for comprehensive understanding of materials
 – Come to the class and participate in the discussions and problems solving sessions
 – Follow through the lecture notes
 – Work out example problems in the book yourself without looking at the solution
 – Have many tons of fun in the class!!!!!

• Keep up with the homework to put the last nail on the coffin
 – One can always input the answers as you solve problems. Do NOT wait till you are done with all the problems.
 – Form a study group and discuss how to solve problems with your friends, then work the problems out yourselves!

• Prepare for upcoming classes
 – Read the textbook for the material to be covered in the next class

• The extra mile
 – Work out additional problems in the back of the book starting the easiest problems to harder ones